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Abstract

With the objective to provide a basis for regional climate models (RCMs) selection

and ensemble generation for climate impact assessments, we perform the first ever

analysis of climate projections for Western Nepal from 19 RCMs in the Coordi-

nated Regional Downscaling Experiment for South Asia (CORDEX-SA). Using

the climate futures (CF) framework, projected changes in annual total precipitation

and average minimum/maximum temperature from the RCMs are classified into

18 CF matrices for two representative concentration pathways (RCPs: 4.5/8.5),

three future time frames (2021–2045/2046–2070/2071–2095), three geographic

regions (mountains/hills/plains) and three representative CF (low-risk/consensus/

high-risk). Ten plausible CF scenario ensembles were identified to assess future

water availability in Karnali basin, the headwaters of the Ganges. Comparison of

projections for the three regions with literature shows that spatial disaggregation

possible using RCMs is important, as local values are often higher with higher vari-

ability than values for South Asia. Characterization of future climate using raw and

bias-corrected data shows that RCM projections vary most between mountain and

Tarai plains with increasing divergence for higher future and RCPs. Warmer tem-

peratures, prolonged monsoon and sporadic rain events even in drier months are

likely across all regions. Highest fluctuations in precipitation are projected for the

hills and plains while highest changes in temperature are projected for the moun-

tains. Trends in change in annual average discharge for the scenarios vary across

the basin with both precipitation and temperature change influencing the hydrologi-

cal cycle. CF matrices provide an accessible and simplified basis to systematically

generate application-specific plausible climate scenario ensembles from all avail-

able RCMs for a rigorous impact assessment.
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1 | INTRODUCTION

Regional climate models (RCMs) are arguably better suited

for climate change impact assessments in the heterogeneous

and steep terrains of Nepal than global climate models

(GCMs; Kundzewicz and Stakhiv, 2010; Flato et al., 2013).

The Intergovernmental Panel on Climate Change (IPCC)

recognizes that similar to GCMs, RCMs have inherent
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limitations and are a work in progress (Stocker et al., 2013;

Rummukainen et al., 2015). Nonetheless, the IPCC reports

with high confidence that RCMs “add value to the simula-

tion of spatial climate detail in regions with highly variable

topography and for mesoscale phenomena such as oro-

graphic effect, convection etc.” (Pg 815 in Flato et al.,

2013). Though Coordinated Regional Downscaling Experi-

ment for South Asia (CORDEX-SA) represents the state-of-

the-arts in RCMs for South Asia (Giorgi and Gutowski,

2016), evaluation and application of CORDEX-SA over

Nepal, specifically at the basin scale, is still lacking. We pre-

sent the first study to use 19 CORDEX-SA RCMs to gener-

ate climate futures (CF) ensembles for water resources

assessment in Western Nepal, namely the Karnali basin,

with the underlying objective to provide a basis for RCM

selection to generate application-specific ensemble projec-

tions to suit the specific goals of a climate impact

assessment.

Given the abundance of water, steep mountains in the

north, rich forests in the mid hills and fertile plains in the

south, many plans for developing large hydropower, irriga-

tion and inter-basin water transfer projects exist in Western

Nepal (IWMI, 2018a). Nearly 43% of the country's untapped

hydropower potential comes from Karnali (Sharma and

Awal, 2013). Alongside, Bheri-Babai inter-basin water

transfer and the Rani-Jamara Kuleriya irrigation projects are

envisioned for mechanization of agriculture. The Digo Jal

Bikas (DJB) project is analysing the trade-offs offered by

these water resource development visions for Western Nepal

to identify pathways and policies that balance sustainable

growth, social justice and resilient ecosystems (IWMI,

2018b). Assessment of climate impacts on water resources is

indispensable for such long-term planning given that West-

ern Nepal is considered one of the most vulnerable regions

within Nepal to climate change (Siddiqui et al., 2012). West-

ern Nepal is also important for the larger Hindu-Kush

Himalayas (HKH) as it is the headwaters of the trans-

boundary Ganges river basin. Changes in water availability

in Western Nepal will affect flow available downstream in

India.

Limited studies address the changing climate in Western

Nepal (Shrestha et al., 2015; Khatiwada et al., 2016) and its

impact on water resources (Shiwakoti, 2017; Pandey et al.,

2019). Fewer studies use RCM ensembles (Karmacharya

et al., 2007; Devkota et al., 2015; Pandey et al., 2019). Eval-

uations of CORDEX-SA RCM performance over the greater

South Asian sub-continent and the HKH show that biases

exist but RCM performances are promising. Ghimire et al.

(2015) considering 11 CORDEX-SA RCMs, Sanjay et al.

(2017a) considering 10 RCMs, Sanjay et al. (2017b) consid-

ering five RCMs and Mukherjee et al. (2017) considering

five RCMs show that most RCMs capture spatiotemporal

pattern of South Asian precipitation, though skill in rep-

roducing absolute observed values is variable. Nengker et al.

(2017) and Choudhary and Dimri (2018) considering five

different RCMs find similar trends for temperature. Gener-

ally, the ensemble outperforms individual RCMs in

hindcasting (Ghimire et al., 2015; Nengker et al., 2017).

However, studies highlight that biases in individual

CORDEX-SA RCMs vary spatially (geographically and atti-

tudinally) and temporally for both temperature and precipita-

tion for both past (Ghimire et al., 2015; Nengker et al.,

2017) and future climate (Choudhary and Dimri, 2018).

Evaluation and correction of spatiotemporal biases is imper-

ative for impact assessment studies, especially those focus-

ing on hydrological application at finer scales, (Wilby,

2010). Quantile-mapping has emerged as promising for cor-

recting RCM and GCM biases in Nepal (Lutz et al., 2016;

Pandey et al., 2019) and abroad (Teutschbein and Seibert,

2012; Themeßl et al., 2012; Lafon et al., 2013).

Known CORDEX-SA biases also highlight the need for

spatial disaggregation in RCM evaluation and application.

Furthermore, aggregation to regional scales as done by

aforementioned studies may lead to cancellation of spatial

variation, especially for climate extremes. Lutz et al. (2016)

suggest evaluation at scale finer than the South Asian basins

done in their study to prevent dilution of local climate sig-

nals. Spatial disaggregation is particularly important for

Nepal, because it lies in the central part of the HKH charac-

terized by a complex climate regime dependent on the

Indian summer monsoon and the winter westerly distur-

bances (Bookhagen and Burbank, 2010; Palazzi et al.,

2013). Sanjay et al. (2017a, 2017b) find that past perfor-

mance of CORDEX-SA RCMs is divergent for central

HKH. Microclimates occur due to the steep elevations and

heterogeneous landscapes in close proximity to the ocean.

The past and future trends for precipitation (b; Karmacharya

et al., 2007; Mcsweeney et al., 2010a) and streamflow

(Gautam and Acharya, 2012) vary across the east–west and

north–south of Nepal.

Large multi-model ensembles are necessary to provide

robust characterization of known RCM biases and incorpora-

tion of projection uncertainties into climate impact assess-

ments (Wilby, 2010; Sanjay et al., 2017b). But past

assessments in Nepal are largely based on GCMs

(Immerzeel et al., 2012; Bharati et al., 2014; Shrestha et al.,

2014; Mishra et al., 2018), using at most five models with

limited justification for model selection. Such practices con-

sider few deterministic future projections and ignore uncer-

tainties and their dependence on the model selection criteria

itself. While the climate modelling community increasingly

promotes the use of multi-model ensembles and probabilistic

projections for impact assessments (Knutti et al., 2010;

Stocker et al., 2013), real-life application of such datasets is
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seldom done by practitioners (Clarke et al., 2011; Whetton

et al., 2012) and hydrologists (Wilby, 2010). Additional bur-

den is levied by having four representative concentration

pathways (RCPs) defined as global future scenarios consid-

ering anthropogenic changes (van Vuuren et al., 2011). Han-

dling multi-model and multi-scenario probabilistic datasets

require time, computation resources and technical skills in

RCM/GCM data processing and bias correction. Given large

uncertainties in observation datasets and models themselves,

it is challenging for practitioners in the global south to jus-

tify spending their limited resources on the tedious task of

generating robust climate projections.

RCM selection methods can help narrow down the ever-

increasing pool of models (Whetton et al., 2012; Weaver

et al., 2013; Lutz et al., 2016). Aforementioned RCM evalu-

ation studies in South Asia use different models and ensem-

bles and assess different variables–providing limited basis

for cross-comparisons. Lutz et al. (2016) combine the enve-

lope approach and the past performance approach to identify

four representative models out of 94/69 GCMs for RCP

4.5/8.5 for impact assessment in major basins in the HKH.

McSweeney et al. (2012) reverse the sequence to select

GCMs for Vietnam. While Lutz et al. (2016) and

McSweeney et al., (2012)'s approaches are thorough, con-

sidering both range of available projections and model skills,

their replication to RCMs and finer spatial scale would

require significant work. For instance, Bajracharya et al.

(2018) skip re-application of the method and directly use the

four models chosen by Lutz et al. (2016) for the entire

Indus, Ganges and Brahmaputra basins for their future water

resources assessment in Kaligandaki, a small sub-basin of

the Ganges. Few existing web-based tools like the KNMI

Climate Explorer (https://climexp.knmi.nl/plot atlas form.

py) and the World Bank Climate Change Knowledge Portal

(CCKP-http://sdwebx.worldbank.org/climateportal/) focus

only on comparison of GCMs. CCKP, targeted towards

practitioners, is well designed and user-friendly but provides

limited help allowing for comparison of only one parameter

from two datasets. KNMI suiting technical audience is

promising but has a steep learning curve requiring substan-

tial online data processing. Both provide limited support for

sub-national analyses.

The Australian Representative Climate Future framework

(CSIRO and BOM, 2015, 2018), is a simpler model selec-

tion tool catering to the needs of practitioners with limited

knowledge and resources, typical in the global south. It

allows scientists to provide a snapshot of model projections

and associated uncertainties to decision-makers by classify-

ing all projections in a visual matrix (Clarke et al., 2011;

Whetton et al., 2012). Users can then select relevant climate

models by focusing on climate risks important to their

impact assessment, considering the entire range of

projections. As Whetton et al. (2012) highlight, the strength

of CF framework lies in its scalability and flexibility for gen-

erating application-specific climate projections. The frame-

work can be applied across disciplines and spatiotemporal

scales, comprising multiple climate parameters, and be

updated as new models emerge.

A robust climate impact assessment can only be con-

ducted with robust projections generated through analysis of

multiple climate models. The spatial detail captured by

RCMs provides a stronger basis than GCMs to generate cli-

mate projections at finer scales suitable for local studies in

heterogeneous terrains such as in the HKH. But the applica-

tion of RCMs and the use of multi-model ensembles have

been limited, especially in smaller basins in the global south

that are often hotspots vulnerable to climate change. To this

end, we explore three key matters for the first time for West-

ern Nepal—the usefulness of CF matrices to generate

application-specific ensemble climate projections tailored to

the needs of a climate impact assessment; the performance

of RCMs compared to historical observations at stations in

three geographic areas; and the need for spatial disaggrega-

tion in climate impact assessment studies. We provide a sim-

ple basis for RCM selection and ensemble generation in the

form of the first ever CF matrices for Western Nepal. Con-

sidering the case of Karnali water resources assessment for

long-term water resources planning, we customize the

Australian framework to generate spatially disaggregated

annual CF matrices synthesizing precipitation and tempera-

ture projections extracted from 19 CORDEX-SA RCMs

applied to this region for the first time. Using the CF matri-

ces for mountain, hill and Terai regions, we generate climate

future ensembles by selectively combining the 19 RCMs,

characterize future climate change at annual and seasonal

scale and assess the future annual water availability in Kar-

nali for long-term water resource development. In due pro-

cess, we evaluate and correct RCM biases against station

data for Nepal. The spatial disaggregation and station-based

bias correction are particularly significant, as past studies

have not evaluated climate change at such fine scales. The

strength and limitations of the RCM-based annual CF matri-

ces as a decision support tool to generate application-specific

climate projections is explored.

2 | MATERIALS AND METHODS

2.1 | Study area

Western Nepal (Figure 1), comprising of the Karnali basin

and parts of the Mahakali basin, is one of the most remote

and naturally pristine regions of Nepal. The south-to-north

elevation ranges from 142 m to 8,143 m (Jarvis et al., 2008).

With 21 dominant soil types in Karnali and over 18 in

DHAUBANJAR ET AL. 3



FIGURE 1 Elevation profile and geographic regions of Western Nepal overlaid with the REMO2009 RCM grids whose centres lie within the

boundaries of Western Nepal and nine meteorological stations inputs and five discharge stations used for climate change impact assessment study in

Karnali [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Methodology for generation and application of climate futures matrices using the Australian framework (Clarke et al., 2011)

[Colour figure can be viewed at wileyonlinelibrary.com]
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Mahakali, there is spatial heterogeneity in biophysical char-

acteristics and biodiversity. The variation is grouped into

three geographic regions by the national Department of Sur-

vey: mountain, hill and Tarai plains. Karnali, the largest

basin in Nepal, drains an area of 49,889 km2, 35% of which

is covered by forests (ICIMOD, 2012). Mahakali is a trans-

boundary river with 32% (~5,628 km2) of the basin in Nepal,

of which 47% are forests. Agriculture (rainfed and irrigated)

covers 15% of Karnali and 28% of the Mahakali within

Nepal. Between 1980 and 2015, the discharge at Karnali's

most downstream station Chisapani (#280) averaged 43 bil-

lion m3/year. Nearly 1,361 glaciers cover 1,740 km2 and

907 glacial lakes cover 37.7 km2 (Ives et al., 2010).

2.2 | Generation of climate futures matrices

Figure 2 shows the workflow adapted from Clarke et al.

(2011). Using Climate Data Operators (Mueller and

Schulzweida 2011), RCMs were standardized; regional spa-

tiotemporal averages evaluated; and projected changes clas-

sified into annual CF matrices.

2.2.1 | Standardize RCM projections

The 19 RCMs, described in Table 1, are referenced through-

out the manuscript with indicated short names, combining

names of driving GCM and downscaling RCM. Thirteen

RCMs available in the CORDEX-SA, as of December 2017,

were downloaded from: https://esg-dn1.nsc.liu.se/search/

esgf-liu/. Additionally, one HadGEM_RA and five CSIRO-

CCAM RCMs (greyed in Table 1) dated 2014 downloaded

from CORDEX-SA in the past were also considered as

newer versions were not available in CORDEX-SA at the

time of our study. These latter six RCMs, considered in

many studies in South Asia (Mcgregor et al., 2013;

Thevakaran et al., 2015; Mukherjee et al., 2017), are

included to have a comprehensive set of RCMs suitable for

Nepal. Only RCPs 4.5 and 8.5, representing the global sce-

narios for medium and high levels of greenhouse gas emis-

sions (van Vuuren et al., 2011), were available for all

19 RCMs. Hence RCPs 2.6 and 6.0 could not be

considered here.

Daily precipitation and near-surface air temperature

(min/max) files from all RCMs were visually inspected.

Based on overlap between various RCM grids, meteorologi-

cal stations and geographic regions, the MPI_REMO grids

were chosen. All RCMs were re-mapped to MPI_REMO

using nearest neighbour method and cropped to the same

extent. Units were converted to mm for precipitation and �C

for temperature.T
A
B
L
E

1
(C
o
n
ti
n
u
ed
)

S
h
o
rt

n
a
m
e

[G
C
M
_
R
C
M
]

D
ri
v
in
g
G
C
M

C
O
R
D
E
X
-S
A
R
C
M

d
es
cr
ip
ti
o
n

R
C
M

m
o
d
el
li
n
g

C
en
tr
e

T
im

ef
ra
m
e

C
o
o
rd
in
a
te

sy
st
em

H
it
s

T
h
e
A
b
d
u
s
S
al
am

In
te
rn
at
io
n
al
C
en
tr
e
fo
r

T
h
eo
re
ti
ca
l
P
h
y
si
cs

R
eg
io
n
al
C
li
m
at
ic

M
o
d
el
v
er
si
o
n
4
(G
io
rg
i

et
a
l.
,
2
0
1
2
)

(C
C
C
R
),
In
d
ia
n

In
st
it
u
te
o
f
T
ro
p
ic
al

M
et
eo
ro
lo
g
y
(I
IT
M
),

In
d
ia

1
5
.

C
N
R
M
_
R
eg
C
M
4

C
N
R
M
-C
M
5

H
is
t:
1
9
5
1
–
2
0
0
5

R
C
P
4
.5
:2
0
0
6
–
2
0
9
9

R
C
P
8
.5
:2
0
0
6
–
2
0
8
5

R
o
ta
te
d
_
m
er
ca
to
r

9

1
6
.

C
S
IR
O
_
R
eg
C
M
4

C
S
IR
O
-M
k
3
.6

H
is
t:
1
9
5
1
–
2
0
0
5

R
C
P
4
.5
/8
.5
:2
0
0
6
–
2
0
9
9

R
o
ta
te
d
_
m
er
ca
to
r

9

1
7
.

IP
S
L
L
R
_
R
eg
C
M
4

IP
S
L
-C
M
5
A
-L
R

H
is
t:
1
9
5
1
–
2
0
0
5

R
C
P
4
.5
/8
.5
:2
0
0
6
–
2
0
9
9

R
o
ta
te
d
_
m
er
ca
to
r

7

1
8
.

M
P
IM
R
_
R
eg
C
M
4

M
P
I-
E
S
M
-M
R

H
is
t:
1
9
5
1
–
2
0
0
5

R
C
P
4
.5
/8
.5
:2
0
0
6
–
2
0
9
9

R
o
ta
te
d
_
m
er
ca
to
r

8

1
9
.

N
O
A
A
_
R
eg
C
M
4

N
O
A
A
-G
F
D
L
-G
F
D
L
-E
S
M
2
M

H
is
t:
1
9
7
0
–
2
0
0
5

R
C
P
:
2
0
0
6
–
2
0
9
9

C
u
rv
il
in
ea
r
ro
ta
te
d
_
m
er
ca
to
r

1
3

6 DHAUBANJAR ET AL.



2.2.2 | Evaluate annual changes over 25-year
periods

Long-term average annual total precipitation (pr) and min/-

max temperatures (tmin/tmax) were evaluated at each grid

for four 25-year timeframes (one historical baseline and

three futures) listed in Table 2. The number of RCMs avail-

able for each RCP and timeframe varies between 17 and 19.

The Δpr, Δtmax and Δtmin at each grid is evaluated as:

ΔprRCM,t,RCP=
prRCM,historical−prRCM,t,RCP

prRCM,historical
×100

ΔtmaxRCM,t,RCP= tmaxRCM,historical− tmaxRCM,t,RCP

ΔtminRCM,t,RCP= tminRCM,historical− tminRCM,t,RCP

2.2.3 | Evaluate regional averages

Figure 1 shows the 0.44� MPI_REMO grids classified into

the northern mountains, the mid-hills and the southern Tarai

plains. Table 3 summarizes the coverage for each region.

Based on these region definitions, Δpr/Δtmax/Δtmin across

relevant grids were spatially averaged.

2.2.4 | Create CF matrices

The regional Δpr and Δtmax/Δtmin are categorized into

qualitative classes in Table 4 to create six matrices. These

classes were defined subjectively, considering the ranges for

Australia, the natural climate variability in Western Nepal

and local demarcations of climate risks. As suggested by

Clarke et al. (2011), the classes were defined independent of

current models, to accommodate addition of future model

additions. The Δpr classes form the rows and Δtmax/min

form columns of the CF matrix with 35 cells. Each cell is

called a climate future, representing a combination of Δpr

and Δtmax/min classes. According to Δpr/Δtmax/Δtmin

obtained, RCMs are assigned to CF cells.

2.3 | Application of CF matrices to Karnali

The four-step process for application of the generated CF

matrices (Clarke et al., 2011) is described in the following.

Developed annual CF matrices is applied to identify RCMs

that are relevant to the climate risks being addressed by a

given study, prepare bias-corrected daily time series data

from these and generate ensemble projections for a climate

scenario at a station location.

2.3.1 | Define relevant risks and
representative climate futures (RCFs)

Climate risks should be identified subjectively in consulta-

tion with stakeholders from a practical perspective consider-

ing the application at hand. Considering long-term water

infrastructure development in this study, stakeholder interac-

tion workshop revealed low-risk future as one where rela-

tively more water is available compared to historical

averages, allowing for higher storage in reservoirs and sub-

sequent distribution, but not significantly more water so as

to increase the risk of floods and landslides. Conversely,

high-risk scenario was defined as one where there is decline

in average water availability. Based on the two risk scenarios

defined from stakeholder perspective, we defined

corresponding representative future climates (RCFs). Hotter

and drier climates will create the high-risk scenario. Wetter

and warmer conditions will increase precipitation create the

low risk scenario. Three RCF have thus been defined consid-

ering the two risks, and a maximum consensus as:

• Low-risk: (Δtmax: Slightly Warmer ORWarmer) + (Δpr:

Wetter ORMuch Wetter)

• Consensus: CF with maximum number of models in the

matrix

• High-risk: (Δtmax: Hotter OR Much Hotter) + (Δpr:

Much Drier OR Significantly Drier)

2.3.2 | Identify plausible RCFs and
relevant RCMs

For each region, there are 18 climate scenarios considering

three RCFs, three future timeframes and two RCPs. For each

scenario, the RCFs cells in the relevant CF matrix are

inspected. If no RCMs are available in the RCF cell, the cli-

mate scenario is ignored as implausible. For plausible RCFs,

TABLE 2 Time frames considered and number of RCMs

available for the two RCP4.5/8.5

Timeframe Years

# of RCMs in

RCP 4.5

# of RCMs in

RCP 8.5

Historical 1981–2005 19 19

Near future (NF) 2021–2045 19 18

Mid future (MF) 2046–2070 19 18

Far future (FF) 2071–2095 18 17

TABLE 3 Coverage of the 0.44� grids for mountain, hill and terai

plains region

Region # of grids Area (km2) Average elevation (m)

Mountain 11 29,690.9 3,929.9

Hill 6 16,304.2 1,785.8

Plain 3 8,187.7 421.8
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the relevant RCMs are selected to generate daily projections

at desired locations.

2.3.3 | Create bias-corrected scenario
ensembles

Nine meteorological stations spread throughout Western

Nepal (Figure 1), with relatively good quality data were

selected for climate characterization. The stations were clas-

sified as mountain, hill and Tarai based on their location.

For each plausible climate scenario, the relevant RCMs iden-

tified for the corresponding region in previous step were

gathered. Daily time series was extracted at the station

latitude-longitude from these RCMs. Observed station data

were compared with RCM simulation data for the historical

timeframe (1981–2005) to establish linear functions for bias

correcting RCM historical and future projections using

empirical quantile-mapping (Gudmundsson et al., 2012;

Teutschbein and Seibert, 2012). Bias-corrected RCM time-

series were then combined as equally weighted multi-model

means to generate a single ensemble projection for each cli-

mate scenario. See Supporting Information S2 for station

details (latitude, longitude, elevation) and the number of

RCMs selected to generate scenarios ensembles.

Satellite-based daily climate data was explored to supple-

ment the data from scarcely spread stations for bias correc-

tion. However, satellite data were not used because they are

poor at capturing topographic dependencies of rainfall

(Ghaju and Alfredsen, 2012; Krakauer et al., 2013; Peña-

Arancibia et al., 2013; Bajracharya et al., 2015), require

application of correction methods specific to the product and

location of application (Müller and Thompson, 2013;

Thiemig et al., 2013), and higher quality products are only

available after the 1990s.

The performance of bias correction was evaluated using:

the Nash–Sutcliffe Efficiency coefficient (NSE), the percent-

age bias (PBIAS) and the coefficient of determination (R2)

at seasonal (winter: DJF, pre-monsoon: MAM, monsoon:

JJAS), post-monsoon-ON) and annual scales. NSE and R2

values close to 1 and PBIAS close to 0 indicate good perfor-

mance, that is, simulated values are statistically close to the

observed.

2.3.4 | Perform impact assessment

A hydrological model of Karnali developed by Pandey et al.

(2018) in Soil and Water Assessment Tool (SWAT; Arnold

et al., 2012), was used to evaluate changes in average annual

discharge (ΔQ) at five discharge stations (Figure 1) in the

basin. The model discretized into 111 sub-basins to capture

the spatial heterogeneity was forced with the bias-corrected

ensemble projections at the nine stations for all plausible cli-

mate scenarios.

3 | RESULTS AND DISCUSSION

3.1 | Spatiotemporal variation in simulated
future for Western Nepal

Table 5 reports the ranges for change in long-term average

annual total precipitation (Δpr) and maximum/minimum

temperature (Δtmax/min) extracted from the 19 RCMs for

Western Nepal. Alongside, Table 5 also presents changes

reported by five different climate change studies for the

HKH region considering large GCM and RCM ensembles.

This study finds that Δtmin and Δtmax for Western Nepal

for RCP 4.5 range 0.6–5.0�C and 0.6–4.0�C, respectively;

while for RCP 8.5, Δtmin and Δtmax range 0.7–9.7�C and

0.6–8.1�C, respectively. The five studies in literature report

the annual mean temperature (Δtmean) values over South

Asia and the HKH around 0.2–4.5�C and 0.3–7.2�C for

RCP 4.5 and 8.5, respectively. These South Asian Δtmean

ranges are comparable to the Δtmax/tmin for Western Nepal

but underestimate Δtmax. Similarly, for entire Western

Nepal, annual Δpr ranges from −19.2 to 48.3% for RCP 4.5

and −26.1 to 70.7% for RCP 8.5. In contrast, annual Δpr

ranges for South Asia are narrower at −5.7 to 27% and −8.5

to 45% for RCP 4.5 and 8.5 scenarios based on the 42 GCMs

TABLE 4 Qualitative classifications of projected changes in precipitation and temperature for Western Nepal

Δ Precipitation classes Δ Temperature classes

Description Range Description Range

Significantly Drier Δpr < −25% Colder Δt < 0�C

Much Drier −25% ≤ Δpr < −15% Slightly Warmer 0 ≤ Δt < 0.5 �C

Drier −15% ≤ Δpr < −10% Warmer 0.5 �C ≤ Δt < 2.0 �C

Little change −10% ≤ Δpr < 10% Hotter 2.0�C ≤ Δt < 3.5�C

Wetter 10% ≤ Δpr < 15% Much Hotter Δt ≥ 3.5�C

Much Wetter 15% ≤ Δpr < 25%

Significantly wetter Δpr ≥25%

8 DHAUBANJAR ET AL.



TABLE 5 Comparison of ranges in current study with five studies focusing on South Asia. Current study ranges are min and max of the

19 CORDEX-SA RCMs for the mountain, hill and terai plain across the three futures. For literature, min–max or quantiles are reported from sources

specified in the last column

This study Literature values

Mountain Hill Plain Range Spatial scale # of models Source

RCP 4.5 Δpr (%) [−12.5–33.8] [−14.5–42.6] [−19.2–48.3] Δpr (%) Annual: [−3–27]

ONDJFM: [−18–28]

AMJJAS: [−7–37]

South Asia 42 GCMs 1

Annual: [−5.7–19.4] Indus, Ganges,

Brahmaputra

94 GCMs 2

JJAS: [0–25]

DJF: [−12–8]

Central HKH 10 GCMs 3

JJAS: [−2–22]

DJF: [−17–18]

Central HKH 13 RCMs 3

JJAS: [−30–30] HKH 10 RCMs 5

Δtmax [�C] [0.7–4.0] [0.6–3.4] [0.7–3.4] Δtmean [�C] Annual: [0.2–3.5]

DJF: [0.1–3.7]

JJA: [0.3–3.3]

South Asia 42 GCMs 1

Annual: [1.7–3.6] Indus, Ganges,

Brahmaputra

94 GCMs 2

Δtmin [�C] [0.6–5.0] [0.6–3.6] [0.7–3.5] JJAS: [1.75–3.2]

DJF: [1.5–4.5]

Central HKH 10 GCMs 3

JJAS: [1.2–2.7]

DJF: [1.5–4]

Central HKH 13 RCMs 3

Annual: [1.0–4.5] South Asia 5 RCMs 4

RCP 8.5 Δpr (%) [−17.4–30.8] [−19.0–48.6] [−26.1–70.7] Δpr (%) Annual: [−7–45]

ONDJFM: [−17–42]

AMJJAS: [−9–57]

South Asia 39 GCMs 1

Annual: [−8.5–37.4] Indus, Ganges,

Brahmaputra

69 GCMs 2

JJAS: [0–35]

DJF: [−20–6]

Central HKH 10 GCMs 3

JJAS: [2–41]

DJF: [−30–5]

Central HKH 13 RCMs 3

JJAS: [−30–30] Entire HKH 10 RCMs 5

Δtmax (�C) [1.0–8.1] [0.7–6.0] [0.6–5.9] Δtmean (�C) Annual: [0.4–6.0]

DJF: [0.3–7.1]

JJA: [0.3–5.6]

South Asia 39 GCMs 1

Annual: [3.6–6.5] Indus, Ganges,

Brahmaputra

69 GCMs 2

Δtmin (�C) [1.1–9.7] [0.7–6.1] [0.8–5.7] JJAS: [2.2–5.5]

DJF: [2.6–6.6]

Central HKH 10 GCMs 3

JJAS: [1.5–4.9]

DJF: [2.5–7.2]

Central HKH 13 RCMs 3

Note: 1. For [2016–2095] relative to [1986–2005], reported min–max in Tables 14.1 and 14.SM.1c in (Christensen et al., 2013).

2. For [2071–2,100] relative to [1971–2000], reported ranges in section 4.1.1 in (Lutz et al., 2016).

3. For [2036–2095] relative to [1976–2005], whiskers in box plot of Figure 9 in (Sanjay et al., 2017a).

4. For [2031–2,100] relative to [1976–2005], min–max of annual time series in Figure 7 in (Sanjay et al., 2017b).

5. For [2020–2099] relative to [1970–2005], ranges in colour maps in Figures 3 and 4 in (Choudhary and Dimri, 2018).
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considered by Christensen et al. (2013) and 94 GCMs by

Lutz et al. (2016). Values for Western Nepal are closer to

seasonal precipitation changes reported by Sanjay et al.

(2017a) and Choudhary and Dimri (2018) based on

10 RCMs. Naturally, our RCM-based ranges are closer to

the literature ranges for RCM ensembles than GCMs. The

comparison with literature highlights the dilution of climate

signal in spatiotemporal aggregation. Local changes can dif-

fer from regional and continental changes, especially for pre-

cipitation. RCMs should be considered in local studies to

resolve finer microclimates within Nepal.

Figure 3 presents the regional changes projected by the

19 RCMs under the two RCPs. The scatter plots show

mountain in blue, hill in orange and plains in green; symbols

indicate the three future time frames (near: x, mid: + and

far: o). RCP 8.5 plot shows higher spatiotemporal spread

than RCP 4.5. Scattered points for plains and hills are close

to each other while those for the mountain are dispersed.

The regions show greater variability in projections as well as

diverge progressively from near to far future. Generally, the

scattering is wider along the y-axis (Δpr) rather than x-axis

(Δtmax/min) indicating greater uncertainty in precipitation.

Regional Δtmin and Δtmax are always positive but the

values differ in magnitude and skewness across the regions.

In the mountain, Δtmin and Δtmax points are higher and

spread wider along the vertical axis compared to hills and

plains, with Δtmin varying by 0.6–5.0�C and Δtmax by

0.7–4.0�C for RCP 4.5; for RCP 8.5 Δtmin ranges at

1.1–9.7�C and Δtmax 1.0–8.1�C. For the plains, the ranges

are smaller with Δtmin ranging around 0.7–3.5/0.8–5.7�C

and Δtmax 0.7–3.4/0.6–5.9�C for RCP 4.5/8.5. Also, for all

regions, Δtmin is generally higher than Δtmax for both

RCPs. With minimum temperature projected to rise faster

than maximum, future temperature ranges may thus be

narrower with higher absolute values than in the past.

Similar consistency in magnitude and direction is not

found for annual Δpr over time or space. Δpr has wider

spread for plain and hill than the mountain with values

FIGURE 3 Changes in long term 25-year average annual means from historical (1981–2005) to near (2021–2045), mid (2046–2070) and far

(2071–2095) future timeframes in RCP 4.5 (top) and RCP 8.5 (bottom) scenarios. Figures on the left show percentage change in long-term average

annual total precipitation versus maximum temperature, whereas on the right shows the changes in precipitation versus minimum temperature.

Symbol colours distinguish the regions: blue-mountain, orange-hills and green-Tarai plains. Symbol shapes distinguish the timeframes: cross-near,

dot-mid and circle-far futures. Refer to web version of the figure for color references [Colour figure can be viewed at wileyonlinelibrary.com]
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scattered horizontally. For the plains, Δpr ranges from −19.2

to 48.3% for RCP 4.5 and −26.1 to 70.7% for RCP 8.5,

suggesting that the future precipitation is projected to be most

erratic in the southern plains. The range for the mountain is

narrower at −12.5 to 33.8% for RCP 4.5 and −17.4.1 to

30.8% for RCP 8.5. For hills, the range is similar to the plains

for RCP 4.5 from 14.5 to 42.6%. But for RCP 8.5, the Δpr

for hills ranges from −19 to 48.6% similar to mountains.

Correlation coefficients (R) listed in Table 6 show

strong spatial correlations between the regions. Within

each region, there is strong correlation between Δtmax

and Δtmin (highlighted in red with R = .92–.96) and Δpr

is not correlated to Δtmax/min (R < .33). Highlighted in

blue, the Δpr across plain and hill show higher correlation

of R = .88 compared to R = .80/.75 between mountain

and hill/plain. In future studies, spatial disaggregation

between plain and hill may be redundant. Spatial correla-

tions for Δtmin (in green) and for Δtmax (in orange) are

all high (R > .92).

3.2 | Climate futures matrices for Western
Nepal

Given the high correlation between Δtmax and Δtmin, only

Δtmax is considered for setting up the CF matrices. The

number of models that fall in each of the Δpr and Δtmax

TABLE 6 Correlation between Δpr, Δtmax and Δtmin across the three regions for all three timeframes and two RCPs. The colour codes are

described in text

For all timeframes for RCP 4.5 and 8.5

Mountain Hill Plain

Δpr Δtmax Δtmin Δpr Δtmax Δtmin Δpr Δtmax Δtmin

Mountain Δpr 1.00 0.15 0.33 0.80 0.05 0.28 0.75 −0.11 0.22

Δtmax 1.00 0.96 0.24 0.98 0.97 0.25 0.92 0.96

Δtmin 1.00 0.35 0.93 0.97 0.31 0.84 0.95

Hill Δpr 1.00 0.10 0.33 0.88 −0.06 0.27

Δtmax 1.00 0.95 0.10 0.97 0.96

Δtmin 1.00 0.31 0.89 0.99

Plain Δpr 1.00 −0.06 0.26

Δtmax 1.00 0.92

Δtmin 1.00

FIGURE 4 Number of models projecting values in each Δtmax (left) and Δpr (right) classes defined in Table 4 for the three regions

considering model projections under both RCPs for all future timeframes
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classes are shown in Figure 4. Consistent with global trends,

none of the models assessed here for RCP 4.5 and 8.5 pro-

ject decrease in temperature and very few project dry condi-

tions. For the mountains, model consensus is highest for

“Hotter” future while for hills and plains “Warmer” future

dominates. Precipitation changes across all three regions pre-

dominately fall under the ±10% “Little change” category.

The number of models projecting “Little change” is more

than three times that of other Δpr classes. Redefining Δpr

classes to separate smaller model projections may be consid-

ered, keeping in mind that classes should accommodate

future RCM additions.

The 18 CF matrices are visualized in three formats pro-

vided in Supporting Information S1. Figure 5 present two

formats of the matrix for the Tarai plains under RCP 8.5_Far

future. Figure 5a shows number of RCMs under each CF

while Figure 5b lists the RCM names. Figures 6 and 7 show

enhancements where the matrices are shown as classified

scatter plots. Colour code indicates model consensus, that is,

percentage of the models under each CF cell. Such layering

of information helps users visualize the full range of projec-

tions and understand where each individual RCMs lie. For a

simplified assessment looking at impacts under generic CF,

Figure 5 may be sufficient. For a study interested in climate

extremes and understanding projection uncertainties, Fig-

ures 6 and 7 will be valuable.

Figures 6 and 7 present CF matrices under RCP4.5_Near

and RCP8.5_Far scenarios for plain and mountain,

respectively. In both regions, the 19 RCMs concentrate

around the “Warmer” + “Little Change” cell in RCP

4.5_Near and spread out further for RCP 8.5_Far. Even pro-

jection based on the same RCM but driven by different

GCMs move in different direction. For example, see points

for MPI_RCA4, MIROC5_RCA4 and IPSLMR_RCA4 that

belong to the RCA4 RCM family. For both mountain and

plain, MPI_RCA4 projections move towards the upper

right – “Drier” + “Hotter” corner, while that for

MIROC5_RCA4 and IPSLMR_RCA4 move towards the

lower right – “Wetter” + “Hotter” corner. The trends for

individual RCMs are also not generalizable across the three

regions. In Figure 6a,b for the plains, HadGEM_RA projects

“Significantly Wetter” conditions but in Figure 7b for the

mountains, HadGEM_RA projects “Drier” conditions. This

suggests that GCM behaviours dominate RCMs outputs, also

noted by Sanjay et al. (2017a).

The matrix-based visualization allows for easy tracking

of changes in Δpr and Δtmax over the different scenarios for

individual RCMs as well as their ensemble behaviour. Such

relative progression of RCMs for the across RCPs and

futures is shown in the animations in Supporting Information

S1. The GIFs show the movement of RCM points for the

plains towards higher precipitation changes (both positive

and negative) for higher RCPs and futures. For the moun-

tains, the RCM points move more along the temperature

axis, where by all RCMs fall under the “Much Hotter” cate-

gory for RCP 8.5_Far (Figure 7b).

FIGURE 5 Simple Climate Future Matrix visuals for Tarai plain under the RCP 8.5 far future (2070–2095). (a) Presents name of RCMs in

each CF while (b) presents number of models. Orange and Green boxes highlight the representative climate futures for low and high risk cases

respectively. See Table 2 for RCM description [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Application of CF matrices to Karnali

3.3.1 | Selected climate scenarios and
relevant RCMs

Table 7 summarize the RCFs and the corresponding RCMs

identified from the 18 CF matrices considering long-term

water resources management. “Little change” + “Warmer”

OR “Hotter” CFs are the dominant RCFs with maximum

model consensus across all regions and climate scenarios.

The number of models in consensus RCF decreases from

14 RCMs for RCP4.5_Near_Consensus scenario in all three

regions to as low as five RCMs for the RCP8.5_

Far_Consensus scenarios in hill and plain. Figure 8 shows the

RCMs selected across the 18 climate scenarios for each

FIGURE 7 Advanced Climate Future Matrix visuals for MOUNTAIN under (a) RCP 4.5 near future (2021–2045) and (b) RCP 8.5 far future

(2070–2095) on the right. See Table 2 for RCM description [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Advanced Climate Future Matrix visuals for Tarai plain under (a) RCP 4.5 near future (2021–2045) and (b) RCP 8.5 far future

(2070–2095) on the right. See Table 2 for RCM description [Colour figure can be viewed at wileyonlinelibrary.com]
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region. For cases RCP4.5_Near_Consensus and RCP8.5

_Near_Consensus, nearly all models are selected for all three

regions as there is relatively small spread in model values.

The MPI_CCAM model is chosen most often across the three

regions. IPSLMR_RCA4 is the least chosen – used only once

for hills, once for Tarai but never used for mountain. The hits

in Table 1 show that, all models are chosen an average of

10 times suggesting that no model is overarching.

Only 10 out of the 18 climate scenarios have representa-

tive RCMs available for all three regions. Three scenarios:

RCP4.5_Near_High-Risk, RCP8.5_Near_Low-Risk and

RCP8.5_Mid_Low-Risk do not have representative RCMs

for all regions. Four high-risk scenarios: RCP4.5_Mid_High-

Risk, RCP4.5_Far_High-Risk, RCP8.5_Near_High-Risk and

RCP8.5_Mid _High-Risk, are only available for the plain.

RCP4.5_Far_Low-Risk scenario is not available in the

mountains. This suggests that high-risk scenarios are more

likely for the plains than in the mountain. However, low-risk

scenarios are unlikely across all regions under RCP 8.5.

RCP 8.5 is a globally defined scenario representing a case

where climate policies are not enforced to limit emissions,

leading to high greenhouse gas concentration (Riahi and

Grubler, 2007; van Vuuren et al., 2011). If climate mitiga-

tion efforts are not implemented as assumed by the RCP 8.5

scenario, high-risk futures are virtually certain beyond 2045.

Conversely, if stringent climate policies are enforced to

lower emissions, as represented by RCP 2.6 not considered

in this study, changes in temperature and precipitation are

TABLE 7 Representative climate futures for mountain, hill and terai plain under RCP 4.5 and 8.5 for all three future time frames for

application in the Karnali basin water resources assessment study

Case
Near future Mid future Far future

Mountain Future # Models Future # Models Future # Models

RCP 4.5 Low risk Much Wetter and Warmer 1 Wetter and Warmer 1 Wetter and Warmer No model

Consensus Little change in rain and

Warmer

14 Little change in rain and

Hotter

9 Little change in rain and

Hotter

9

High risk Much Drier and Hotter No model Much Drier and Hotter No model Much Drier and Hotter No model

RCP 8.5 Low risk Wetter and Warmer 1 Wetter and Warmer No model Wetter and Warmer No model

Consensus Little change in rain and

Warmer

10 Little change in rain and

Hotter

8 Little change in rain and

Much Hotter

7

High risk Much Drier and Hotter No model Much Drier and Hotter No model Much Drier and Much

Hotter

1

Hill

RCP 4.5 Low risk Wetter and Warmer 2 Much Wetter and Warmer 1 Wetter and Warmer 2

Consensus Little change in rain and

Warmer

14 Little change in rain and

Warmer

10 Little change in rain and

Hotter

5

High risk Much Drier and Hotter No model Much Drier and Hotter No model Much Drier and Hotter No model

RCP 8.5 Low risk Wetter and Warmer 3 Wetter and Warmer No model Wetter and Warmer No model

Consensus Little change in rain and

Warmer

12 Little change in rain and

Hotter

8 Little change in rain and

Much Hotter

6

High risk Much Drier and Hotter No model Much Drier and Hotter No model Much Drier and Much

Hotter

2

Plain

RCP 4.5 Low risk Wetter and Warmer 1 Wetter and Warmer 5 Wetter and Warmer 3

Consensus Little change in rain and

Warmer

14 Little change in rain and

Warmer

7 Little change in rain and

Warmer

5

High risk Much Drier and Hotter No model Much Drier and Hotter 2 Much Drier and Hotter 1

RCP 8.5 Low risk Wetter and Warmer 3 Wetter and Warmer No model Wetter and Warmer No model

Consensus Little change in rain and

Warmer

12 Little change in rain and

Hotter

6 Little change in rain and

Much Hotter

5

High risk Much Drier and Hotter 1 Much Drier and Much

Hotter

1 Significantly Drier and

Much Hotter

1
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likely to be lower than that presented here for RCP 4.5

and 8.5.

Figure 9 visualizes the role of CF matrices in generating

the climate scenarios for Karnali by comparing the ranges in

Δpr and Δtmax for all available RCMs to that of the ensem-

bles representing the 18 scenarios. The bars show the ensem-

ble means with mean values listed at the top, while the error

bars show the ranges across the RCMs. The ranges are

narrower for the scenarios than for “all RCMs” as the sce-

narios selectively group models that agree in projections.

The low and high-risk scenarios have even narrower ranges

because they comprise of fewer RCMs. Especially for Δpr,

it is clear that each climate scenario only samples a portion

of the full range of available projections. While Δpr values

for all RCMs across all regions and scenarios range from

−26.1 to 70.7%, the ensemble means for the scenarios are

between −2.8 and 8.9%. The low-risk scenario ensembles

across all regions and scenarios have mean Δpr values

between 10.5 and 18.2%, consensus between −9.7 and

10.0% and high risk between −26.1 and −16.0%. Similarly,

for Δtmax, when considering specifically the far future,

Δtmax across all regions ranges between 0.9 and 5.9�C for

all RCM, 0.6 and 0.2�C for low-risk, 0.6 and6.1�C for con-

sensus and 4.1 and 6.8�C for high-risk cases.

Using an ensemble with all RCMs would in essence only

simulate climate scenario with small changes in precipitation

as seen for the consensus RCF because climate signals from

different RCMs cancel out. Application of CF matrix as an

RCM selection criterion prior to ensemble generation allows

practitioners to create ensembles that match the climate risk

of their interest lending well to a scenario-based impact anal-

ysis. The dilution of climate signals when creating ensem-

bles is not as much an issue for Δtmax. Nonetheless,

analysis that considers RCM selection consciously can pro-

vide more robust climate inputs in comparison to random

use of RCMs without characterizing the nature of the

projections.

3.3.2 | Bias correction of scenario ensembles

Bias-corrected multi-model ensembles were prepared at nine

meteorological stations in shown in Figure 1 for the 10 cli-

mate scenarios. Stations 202 and 303 lie in the mountain;

104, 406, 513 and 514 in the hill; and 140, 187 and 225 in

the plain. Figure 10 presents historical long-term average

seasonal total precipitation and maximum temperature based

on observed data (black bar), the raw scenario ensembles

(dashed lines) and bias-corrected ensembles (coloured bars).

The deviation of the raw RCM ensembles from the historical

observed values indicate a spatial trend in bias. Consistent

with literature listed in Table 5, the raw ensembles show wet

biases for mountain stations, both wet and dry biases for hill

stations and dry biases for the lower elevation plain stations.

Stations 104 (1848 m) and 514 (2,100 m) classified as hilly

FIGURE 8 RCMs selected for the 18 different climate scenarios for the three regions (M-mountain, H-hill and T-Tarai plain) based on the

climate futures matrices in Supporting Information A. See Table 2 for description of the RCMs [Colour figure can be viewed at

wileyonlinelibrary.com]
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station due to their latitude-longitude lie in relatively high

elevations. It is interesting to note that station 104 in particu-

lar shows biases expected for the mountain region. Ghimire

et al. (2015) also find that, RCM precipitation bias varies

from −20 to 20% between 0 and6,000 m. Precipitation

biases also shows a seasonal trend. In the mountain and hill,

there is a wet bias across all seasons for the majority of the

scenarios. However, in the plain, there is a dry bias in the

monsoon (JJAS) and wet bias in winter (DJF). The least bias

is seen for the pre-monsoon (MAM).

In Figure 10b for long-term average seasonal maximum

temperature, the raw historical ensemble values lie below

the historical observed bar in black across all stations show-

ing systematic cold bias across all seasons and scenarios.

Higher biases are seen for the mountain stations than the hill

and plain stations. The bias is worst at mountain station

202, with biases as high as −29.5�C in the monsoon (JJAS),

while performance is best at hill station 104. The observed

cold bias is consistent with Nengker et al. (2017)'s findings

of seasonal biases of −7�C on average and as high as −14�C

for the western HKH. However, these RCM temperature

biases are higher compared to GCM biases of −6.0 to 2.5�C

reported by Lutz et al. (2016) for the entire HKH.

Quantile-mapping performs well, especially for tempera-

ture due to the systematic nature of biases. The seasonal

performance statistics (NSE, R2 and PBIAS) for raw and

bias-corrected RCM ensembles are reported in Supporting

Information S3. For precipitation, the NSE for the raw RCM

ensembles for the mountain stations are significantly worse

(−5.04 to 0.60) than those for the stations in the hill (−0.01

to 0.90) and plain (0.16 to 0.92). Quantile-mapping increases

the NSE across all precipitation ensembles to an acceptable

range of 0.76 to 0.96 and PBIAS values from (102.8 to

193.4%) to (0.01 to 0.05%). The NSE for maximum temper-

ature is improved from −33.8 to 0.85 for raw ensembles to

0.85 to 0.96 for bias-corrected ensembles, while the PBIAS

is improved from 95% to 0% across all stations and scenar-

ios. Meanwhile, the good R2 values for raw historical RCM

ensembles for maximum temperature ranging from 0.75 to

0.95 highlight the systematic nature of the temperature bias.

3.3.3 | Future climate projection for Karnali

The solid lines in Figure 10 show seasonal averages for

bias-corrected future RCM ensembles for each of the nine

meteorological stations. Table 8 lists the range in seasonal

and annual averages seen across each region. Future temper-

atures are higher than historical values across all seasons and

stations with highest warming seen in the mountain stations

202 and 303. There is no discernible trend in precipitation.

Figure 11 further explores the seasonal future climate

projections presenting the range of projected changes with

FIGURE 9 Region-wise means (bars) and ranges (error bars) in long-term annual average Δpr and Δtmax for all available RCMs (greyed) and

representative RCM ensembles for the 18 different climate scenarios combining 2 RCPs (4.5 and 8.5), 3 futures (near, mid, far) and three RCFs (low

risk, consensus, high risk). Numbers at the top of graph indicate mean value for each scenario ensemble [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 10 Comparison of long-term seasonal averages for (a) total precipitation and (b) maximum temperature in historical and future time

frame across the nine meteorological stations. Observed historical station data and bias corrected historical RCM ensembles are shown as bar plots.

Raw historical RCM ensembles are shown in dashed lines and bias corrected future RCM ensembles are in solid lines. Colours differentiate the

observed (in black), five RCP 4.5 scenarios (in shades of blue) and five RCP 8.5 scenarios (in shades of brown). Refer to web version of the figure

for color references. Inset in top right corner shows station locations in Karnali [Colour figure can be viewed at wileyonlinelibrary.com]
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respect to the bias-corrected historical values. Δtmax is more

similar across hills and plains than Δpr. Average Δpr has a

wide range in all three regions. However, in Figure 11a the

median Δpr across all seasons, scenarios and stations lie

close to zero, with whiskers extending in both positive and

negative directions. The medians for low-risk scenarios are

generally skewed above zero while the single high-risk sce-

nario is negatively skewed. Winter (DJF), pre-monsoon

(MAM) and post-monsoon (ON) precipitation projections

fluctuate more than monsoon (JJAS), suggested by the

higher mean Δpr values and whiskers extending beyond

100% for these seasons. Highest changes are seen in post-

monsoon (ON), with averages Δpr as high as 196% projec-

ted for the hill and as low as −51.6% in the mountain. While

absolute changes in post-monsoon, winter and pre-monsoon

precipitation do not appear significant compared to the mon-

soon in Figure 10a, the high range in percentage changes

and low medians in Figure 11a suggest a shift in rainfall pat-

tern. The mean, median and overall distribution of Δpr sug-

gest prolonged monsoon and frequent sporadic rain events

even in drier months.

In Figure 11b, Δtmax has a clear spatiotemporal trend

with higher values and spread seen in the mountain stations,

for higher futures and RCPs. All means and medians lie

above zero providing strong indication of temperature rise

all year-round. Only for the pre-monsoon (MAM) and for

mountain stations, some whiskers extend below zero. Aver-

age Δtmax across all regions is highest for the mountains at

8�C in the winter (DJF) and lowest at 0.4�C in the monsoon

(JJAS). The average annual Δtmax, ranging 0.5–5.3�C

across the mountains and 0.8–4.5�C across the hills and

plains are well representative of seasonal changes.

Figure 12 summarizes the changes in average annual

Δpr (green) and Δtmax (brown/yellow), with red line in

each bar chart distinguishing the RCP 4.5 and RCP 8.5

scenarios. Trends in annual Δpr and Δtmax across the vari-

ous scenarios are similar for the stations in the same region.

The average annual Δpr ranges from −14.1 to 16.7%, for

mountain, −10.3 to 20.7% for hill and −23.8 to 16.4% for

plain. Average annual Δpr is negative only for the last bar

in each chart for RCP8.5_Far_HighRisk, the only valid

high-risk scenario representing dry conditions. Across all

regions average seasonal Δpr values (−51.6 to 196.8%) are

much higher and variable than annual values (−23.8 to

20.7%). Increasing trends in average annual Δtmax across

the climate scenarios and stations are similar. Average

annual Δtmax ranging around 0.5–5.3�C is highest for the

mountain, with higher values for RCP 8.5 than RCP 4.5

farther in the future. These spatial variations are consistent

with prior observation based on raw RCM data that Δpr

appears more prominent in the Tarai while Δtmax is more

prominent in the mountains.

Presented projections at the nine stations reiterate the spa-

tiotemporal variation in climate even over short distances in

heterogeneous terrains. Stations 202 and 303 lie about

120 km apart in the mountains but show difference in sea-

sonal change for both precipitation (Figure 11a) and temper-

ature (Figure 11b). Pattern in station 104 in the hill is similar

to that of the mountain stations at similar elevations; though

station 514 at higher elevation follows patterns in other hill

stations. Scientific advances leading to increase in reliability

and resolution of satellite-based climate data and RCMs will

be key to ensure future climate assessments can better cap-

ture these variations induced by complex topography and

microclimates across the over 50,000 km2 span of Western

Nepal.

3.3.4 | Impact assessment study

Figure 12 presents the SWAT simulated percentage changes

in average annual discharge ΔQ (blue) at five discharge sta-

tions under the 10 climate scenarios. The stations show vary-

ing level of sensitivity to change in precipitation and

temperature. Specifically, station 215 in the mountain region

shows higher increases with ΔQ varying from 48.2 to 63.8%

while downstream station like 280 show minimal changes

ranging from 01.6 to 11.6%. Maximum decline in discharge

is seen in station 220 at −19.1% for the RCP

TABLE 8 Range in seasonal and annual average Δpr and Δtmax values across meteorological stations in the three regions. Stations considered

within each region are presented in brackets

DJF MAM JJAS ON Annual

Mean Δpr (%)

Mountain (202, 303) −45.7 to 43.2% −41.8 to 73.8% −3.1 to 22.3% −51.6 to 104% −14.1 to 16.7%

Hill (104, 406, 513, 514) −32.5 to 47.7% −29.7 to 54.5% −6.9 to 22.9% −45.7 to 196.8% −10.3 to 20.7%

Plain (209, 207, 405) −41.1 to 62.5% −46.8 to 54.3% −21 to 14.8% −46.5 to 123.4% −23.8 to 16.4%

Mean Δtmax (�C)

Mountain (202, 303) 1.1 to 8.0�C 0.5 to 7.0�C 0.4 to 4.1�C 0.1 to 4.2�C 0.5 to 5.3�C

Hill (104, 406, 513, 514) 0.9 to 5.8�C 1.0 to 5.8�C 0.7 to 3.8�C 0.6 to 4.1�C 0.8 to 4.5�C

Plain (209, 207, 405) 1.1 to 5.8�C 0.6 to 5.7�C 0.6 to 3.4�C 0.5 to 4.0�C 0.8 to 4.5�C
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FIGURE 11 Projected changes in of long-term seasonal averages for (a) total precipitation in (%) and (b) maximum temperature in (�C) for

the 10 climate scenarios at nine meteorological stations. Change evaluated with respect to historical RCM ensemble corresponding to each climate

scenario. See Figure 10 for legend mapping colours to different climate scenarios. Edges of the box plot indicates interquartile range (IQR), interior

line indicates median and whiskers indicate lower of ±1.5*IQR or max/min data values. Colours differentiate the five RCP 4.5 scenarios (in shades

of blue) and five RCP 8.5 scenarios (in shades of brown). Refer to web version of the figure for color references [Colour figure can be viewed at

wileyonlinelibrary.com]
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4.5_NF_Consensus scenario. Stations 220, 270 and

280 appear more resilient to climate change than others at an

annual scale. Such difference in response of Q stations to

Δpr may relate to location of station along the river. Rising

temperatures across the region will increase evapotranspira-

tion, which may explain low ΔQ values in downstream sta-

tions given high Δtmax for RCP 8.5 scenarios. In

RCP8.5_FF_HighRisk, the decline in precipitation across all

meteorological stations, simulated decline in discharge only

in stations 220, 270 and 280, suggesting that they are rain-

fed. The increasing and decreasing trends seen at station

220 and 270 across the different scenarios requires further

exploration of the water balance components and upstream-

downstream linkages. Such rigorous analysis of sub-annual

changes and uncertainties in water balance components is

presented in Pandey et al. (2018).

3.4 | Uncertainty in the CF framework

The IPCC reports “low confidence in projections of many

aspects of climate phenomena that influence regional climate

change” due to the coarse model resolution and limited sci-

entific understanding of aerosol and cloud processes that are

key drivers of climate change (Pg. 115 in Stocker et al.,

2013). As seen in Figure 10, the bias in precipitation is more

complex than temperature bias, potentially due to the com-

plexities of the governing orographic processes of cloud for-

mation. Bias from limitations in existing RCM and GCMs

are hard to resolve only by statistical methods (Flato et al.,

2013; Sanjay et al., 2017a). Such model uncertainties

become more important at regional and sub-regional scale

considered here. Multi-model and multi-scenario analysis

using the CF framework is one alternative to consider both

FIGURE 12 Green and brown bar charts show changes in average annual total precipitation (Δpr) and maximum temperature (Δtmax)

respectively based on bias-corrected multi-RCM ensembles generated for ten climate scenarios at the nine meteorological stations. Blue bar charts

show change in annual average discharge (ΔQ) at five discharge stations simulated by the SWAT model for the ten climate scenarios. Value range

in each bar chart and unit is indicated above the chart. Order of climate scenarios in bar charts from left to right is: RCP4.5_NF_Low Risk,

RCP4.5_NF_Consensus, RCP4.5_MF_Low Risk, RCP4.5_MF_Consensus, RCP4.5_FF_Consensus, RCP8.5_NF_Low Risk,

RCP8.5_NF_Consensus, RCP8.5_MF_Consensus, RCP8.5_FF_Consensus, RCP8.5_FF_High Risk [Colour figure can be viewed at

wileyonlinelibrary.com]
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model and scenario uncertainties in climate impact assess-

ments (Knutti et al., 2010; Stocker et al., 2013).

The CF framework inherently assumes spread in model

projections as the only measure of uncertainty and consensus

between models as the measure of confidence in the repre-

sentative climate future. As such, the CF matrix does not

provide a measure of total uncertainty. The framework is

also sensitive to the models included in the initial ensemble;

also, included models may not be independent of each other

(Knutti et al., 2010). This may exacerbate known biases in

CORDEX-SA RCM families and limitations in application

of RCMs to finer scales.

The use of raw projections for generating the CF matrices

is also contentious. The extent to which past performance of

RCMs should be given importance in gauging confidence in

future projections is a debate that extends beyond this paper

(Wilby, 2010; Flato et al., 2013; Whetton et al., 2016). Lutz

et al. (2016) also highlight this difficulty and suggest

reordering the steps in their model selection approach to suit

user preference. However, the similarity in projection trends

in Figure 3 (raw RCMs) and in Figure 11 (bias-corrected

RCMs) provides some validation that RCM selection using

the raw projection-based CF matrix is reasonable. Nonethe-

less, raw RCM data should only be used as a first step in

grouping RCMs into ensembles. Investigation of past perfor-

mance and bias correction of selected RCMs to remove

models with significantly poor performance is necessary.

Further investigation of biases, including impact of CF

matrix on biases propagation will be addressed in forthcom-

ing papers.

The spatial scale of application is also debatable. While

finer scale is desirable here, working with only a few grids

may introduce physical inconsistencies, and inflate RCM

uncertainties as explored by Madsen et al. (2017). For the

case of Western Nepal, the mountain covers majority of the

basin while only three grids form the Tarai plains. Combin-

ing the hill and plain for future iteration may be desirable.

The suitability of using the mountain, hill and plain regions

defined by the national Department of Survey as climatic

zones also needs to be analysed as projections and biases

vary stronger with elevation. In addition, projections dis-

cussed here for climate change in Western Nepal may not be

generalizable for other parts of the country.

The CF matrices developed here uses annual scale pro-

jections. The seasonal analysis of bias-corrected projections

plausibly show that the seasonal precipitation signals are not

be well reflected by annual averages. Table 5 comparing

annual changes reported in literature for the HKH with

values obtained for Western Nepal, shows that the spatio-

temporal averages can be misleading as decreasing and

increasing rainfall signals cancel out providing low values

for annual changes. For impact assessments sensitive to

climate seasonality, such as flood prediction, extreme analy-

sis etc., CF matrices based on sub-annual changes will be

better. Further analysis of seasonal climate change and its

impact on different sectors is being conducted and will be

presented in the next paper.

3.5 | Climate futures as decision support tools

Though various uncertainties limit the credibility of RCMs,

especially at local scales, these represent the best efforts we

have. Additionally, changes in the future due to non-physical

and anthropogenic activities are hard to capture. The CF

framework can be a valuable decision support tool bridging

the gap between credibility and usability of climate projec-

tion. Many practitioners still prefer traditional single projec-

tion measures such as means and median (Whetton et al.,

2016). Simpler products, like the Climate Futures for West-

ern Nepal presented here, can deliver climate projections

and uncertainties in forms that resonate with users, while not

requiring them to process large RCM datasets on their own

(Whetton et al., 2016). The framework provides a middle

ground whereby users can still think in terms of single pro-

jections while scientists provide some measure of uncer-

tainty visualized in the form of model spread. Better

visualization showing how climate change will vary over

time under various RCPs is another way to push decision-

makers towards measures that minimize such changes. Fig-

ures 3, 5–7 visualize essentially the same data with addi-

tional layers of information to make decision-makers aware

of their model selection process. Additional screening of

model can also be done after the CF matrices if desirable

(Clarke et al., 2011). User-friendly tools like the CF matrices

can be a basis for improvement and uptake of RCMs for

conducting a robust assessment of climate impacts.

4 | CONCLUSIONS

Using projections of 19 different CORDEX-SA RCMs to

develop 18 CF matrices and 10 plausible CF scenarios for

long-term water resources planning, this study provides the

first comprehensive RCM selection framework for Western

Nepal for generating region and application-specific climate

projections. We characterize the spatiotemporal variability in

future climate across three regions (mountain, hill and

plains) of the Karnali basin and evaluate RCM performance

for the same. The 10 plausible climate scenarios identified

from the 18 CF matrices suggest that high-risk scenarios,

with drier and warmer climates, are more likely to occur in

the Tarai plains than in the mountain.

For Western Nepal, RCM projections capture spatial var-

iation. The magnitudes of change in climate across the three

regions vary, with higher correlation between changes in
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hills and plains. Under RCP 4.5 and 8.5, the hill and plain

show greater variability in both magnitude and direction of

change in rainfall. Increases in temperature are projected

across all three regions, with higher Δtmin/max for moun-

tains than hills and Tarai. Projected precipitation shows

increasing variability in both directions (wet and dry) further

into the future. Comparison of raw projections with that for

the greater HKH from literature indicates that values for

Western Nepal are generally higher with wider ranges even

at annual scale. Spatial disaggregation is thus necessary to

identify sub-basin scale change in climate, especially precip-

itation, for areas like Western Nepal that show high degree

of spatial heterogeneity and prevalence of microclimates.

Use of coarser national or regional scale averages may

underestimate local changes, which are better resolved

in RCMs.

Assessment of biases across the nine meteorological sta-

tions in Karnali show that precipitation bias varies with ele-

vation, location and season, while temperature bias varies

with spatial location. RCM projections consistently show

wet bias in the winter across all regions. In the monsoon,

there is wet bias in the mountain stations and dry bias in the

plain stations. While RCM performances need improvement,

it is shown that quantile-mapping performs well for bias cor-

rection across all RCMs. The location-sensitive RCM biases

highlight the need for location-specific bias correction in

heterogeneous terrains. Stations data may thus be more

important for bias correction of projections from RCMs

than GCMs.

Across Karnali stations, the bias-corrected Δpr project

highest values and spread for the post-monsoon season

(JJAS), especially in the hills, indicating a potential shift in

rainfall pattern with prolonged monsoon and sporadic

intense rain events likely even in drier months. Average sea-

sonal Δpr values (−51.6 to 196.8%) are much higher and

variable than annual values (−23.8 to 20.7%). The average

annual Δtmax, ranging around 0.5–5.3�C across the moun-

tains and 0.8 to 4.5�C across the hills and plains are well

representative of seasonal changes. Based on raw and bias-

corrected RCM projections for RCP 4.5 and 8.5, it can be

concluded that farther in the future, the hills and plains will

see most fluctuation in precipitation while the mountains

will see highest increases in temperature. Spatial variation in

temperature is projected to be narrower, but absolute values

for minimum and maximum temperature may increase. The

lack of definite direction in precipitation change will be key

challenge in management of climate risks.

Evaluation of future water availability in Karnali under

the 10 plausible CFs showed that changes in average annual

discharge at five discharge stations are not consistent with

changes in annual precipitation and temperature. Discharge

stations 215, 260 and 280 simulate increasing average

annual ΔQ across all scenarios while stations 220 and

270 simulate variable average annual ΔQ ranging from

−19.1 to 7.3%. Downstream discharge stations appear more

climates resilient with limited changes in ΔQ. Further analy-

sis of water balance components at sub-annual and seasonal

scale and its implication is provided in concurrent paper.

A thorough understanding of the spatiotemporal variation

in future climate is essential to build climate-resilient ecosys-

tems. It is demonstrated that the CF framework provides a

systematic basis to create multi-modal climate scenario

ensembles for a robust scenario-based impact assessment by

consciously sampling a subsection of all available projec-

tions that capture the most relevant climate risks. More

importantly, the use of the CF framework for RCM selection

can bring about the realization that climate projections

should not be considered deterministic. Ideally, the CF will

also motivate practitioners to delve deeper, performing addi-

tional analysis of uncertainty and biases in projections for a

more manageable number of datasets that are directly rele-

vant to their application. As many governments in the global

south push for large infrastructure projects and rapid urbani-

zation plans for development similar to the case of Western

Nepal, the CF framework can support robust climate change

impact assessments to identify climate-resilient development

pathways. While an annual scale CF framework is deemed

sufficient for long-term water resources management consid-

ered in this study, an impact assessment sensitive to seasonal

changes should replicate the method to develop monthly or

seasonal CF matrices to better capture the seasonal risks and

uncertainties.
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