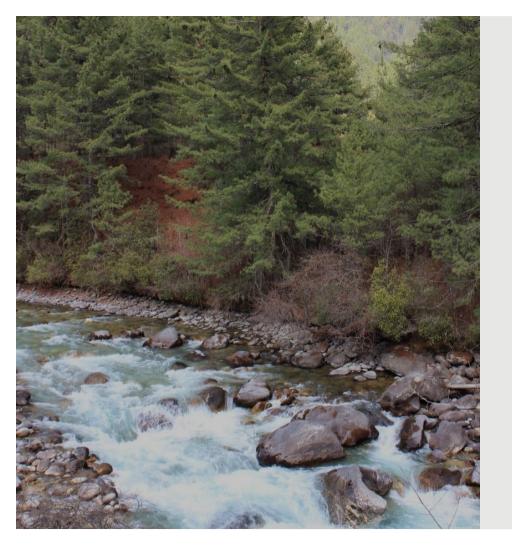


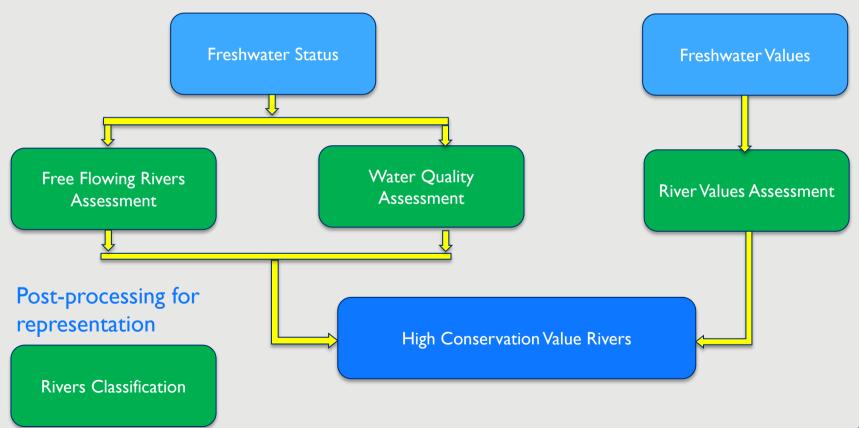
# System-scale planning to support sustainable energy systems and conservation of freshwater resources for people and nature


Nepal



## **High Conservation Value Rivers of Nepal**

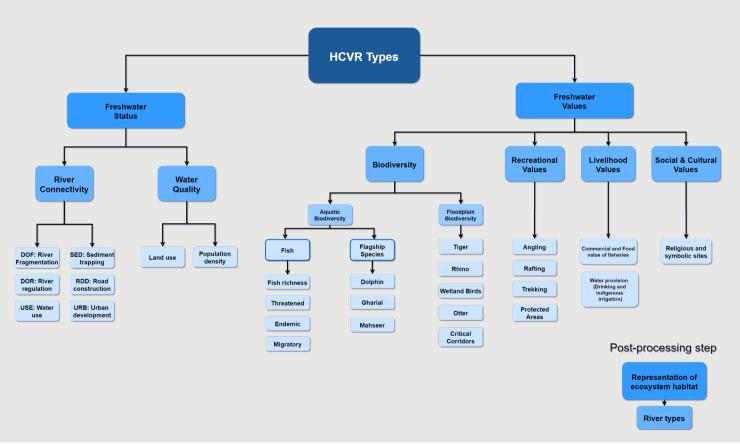
#### Final Report - December 16th, 2020


Günther Grill (McGill University), Michele Thieme (WWF-US), Jibesh Kumar K.C. (WWF Nepal), Natalie Shahbol (WWF-US), Rajesh Sada (WWF-Nepal) and Rafael Schmitt (Stanford University)

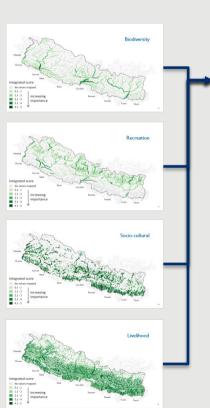


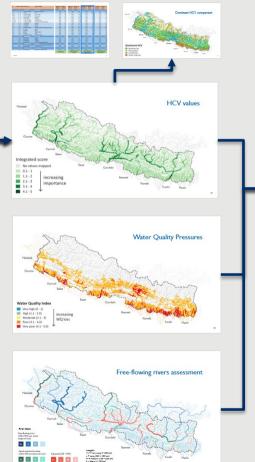
# Why "High Conservation Value (HCV) Rivers" Assessment?

- Increasing degradation of rivers
- Loss of ecological, livelihood, tourism, cultural & other values
- Demand to maintain portion in "Natural" state for service delivery
- Baseline/reference rivers for understanding to compare against rivers which are being tapped for development
- Identify river or river stretches that are relatively still intact and that are providing critical ecosystem services to nature and to humankind
- Conserve freshwater integrity in selected rivers/ river stretches for current and future generations

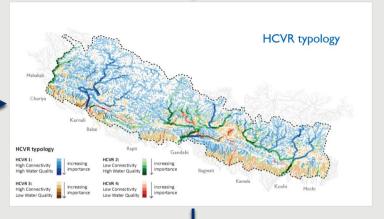

### There are many components of a HCVR assessment

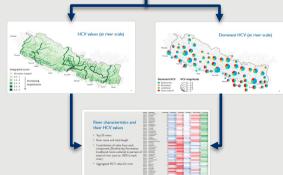



#### **HCVR** Definition within Nepalese Context

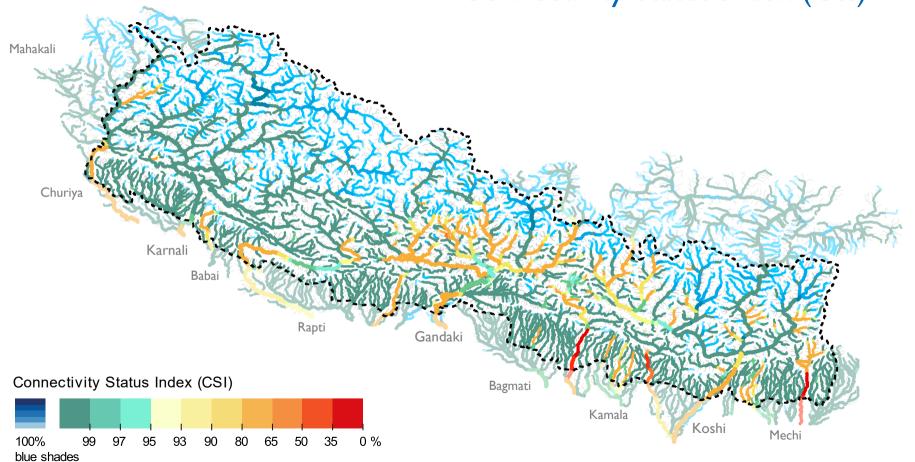

A High Conservation Value River is a clean, highly connected or free-flowing river or stretch that acts as a lifeline, maintaining ecosystem services for present and future generations, providing refuge and habitat for high levels of aquatic biodiversity, and supporting important socio-cultural values.

#### **Overview of Freshwater Values and Status**

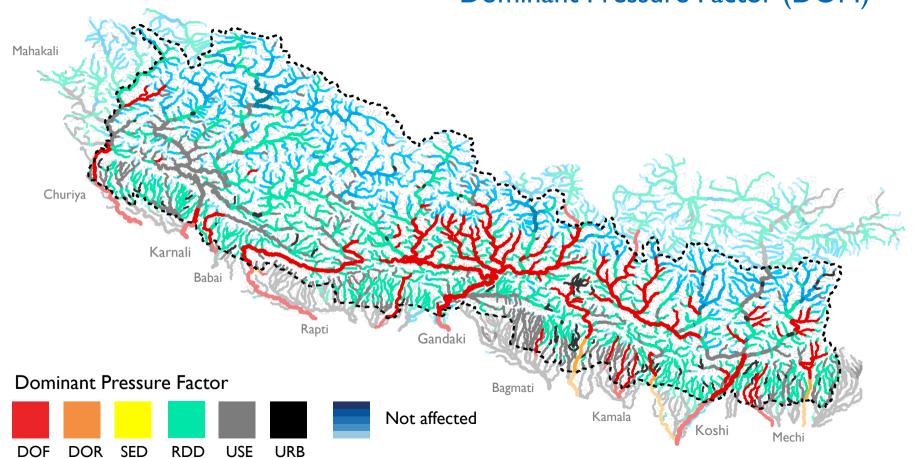


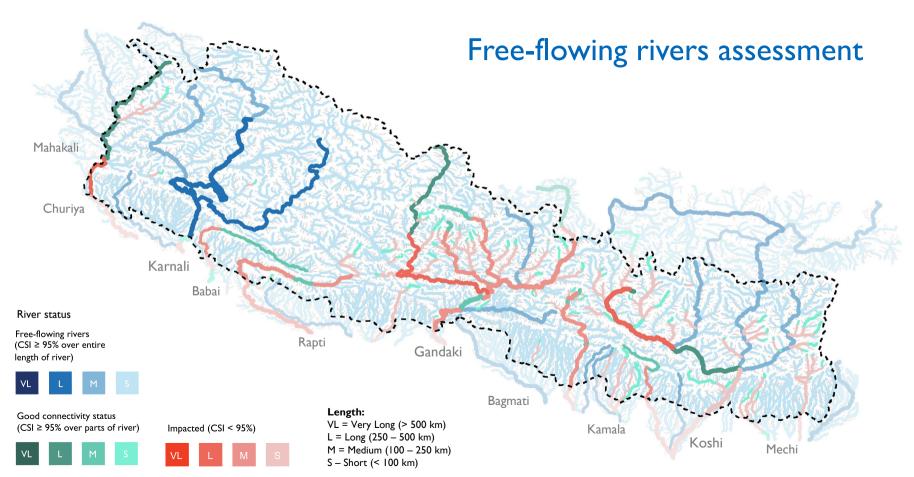


# Overview of results

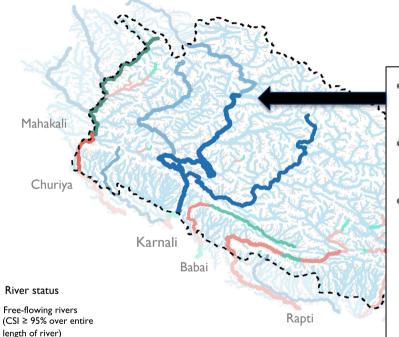








#### Connectivity Status Index (CSI)



#### Dominant Pressure Factor (DOM)

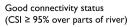






#### Free-flowing rivers assessment

- The Karnali is the longest free-flowing river in Nepal.
- It merits particular consideration for protection.
- The other components of this project have assessed that protection of a free-flowing Karnali River can be achieved with power systems that are cost competitive.











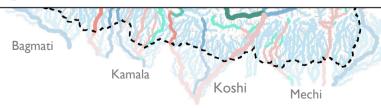


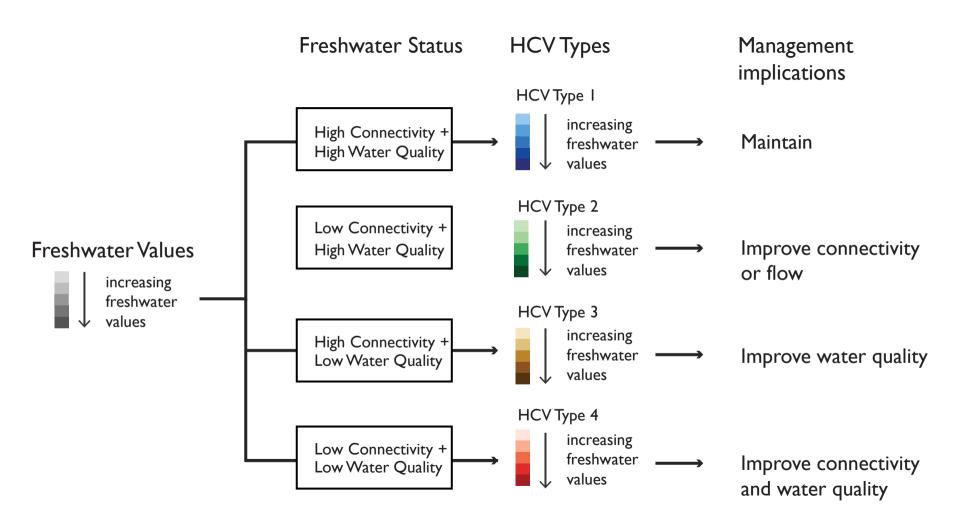













VL = Very Long (> 500 km) L = Long (250 - 500 km)M = Medium (100 - 250 km)S – Short (< 100 km)



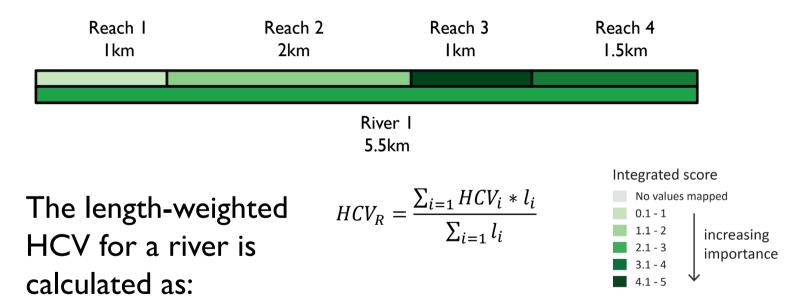


| SN        | Level | ID | Parent | Value_cat      | Value_category                         |
|-----------|-------|----|--------|----------------|----------------------------------------|
| 1         | 1     | 1  |        | BIODIVERS      | Biodiversity                           |
| 1.1       | 2     | 2  | 1      | AQUA_BIODIV    | Aquatic Biodiversity                   |
| 1.1.1     | 3     | 3  | 2      | FISH           | Fish                                   |
| 1.1.1.1   | 4     | 4  | 3      | FISH_SPECIES   | Fish richness                          |
| 1.1.1.2   | 4     | 5  | 3      | FISH_THRTND    | Threatened                             |
| 1.1.1.3   | 4     | 6  | 3      | FISH_END       | Endemic                                |
| 1.1.1.4   | 4     | 7  | 3      | FISH_MIGR      | Migratory                              |
| 1.1.1.4.1 | 5     | 8  | 7      | FISH_LG_MIGR   | Long Migratory                         |
| 1.1.1.4.2 | 5     | 9  | 7      | FISH_ST_MIGR   | Medium and Short Migratory             |
| 1.1.2     | 3     | 10 | 2      | MAHSEER        | Mahseer                                |
| 1.1.3     | 3     | 11 | 2      | DOLPHIN        | Dolphin                                |
| 1.1.4     | 3     | 12 | 2      | GHARIAL        | Gharial                                |
| 1.2       | 2     | 13 | 1      | FLOOD_BIODIV   | Floodplain/Wetland-Dependent Biodiv.   |
| 1.2.1     | 3     | 14 | 13     | TIGER          | Tigers                                 |
| 1.2.2     | 3     | 15 | 13     | RHINO          | Rhinos                                 |
| 1.2.3     | _     | 16 |        | BIRD           | Wetland Birds                          |
| 1.2.4     | _     | 17 |        | OTTER          | Otter                                  |
| 1.2.5     |       | 18 | 13     | CRITICAL_CORR  | Critical Corridors                     |
| 2         |       | 19 |        | RECREATION     | Recreation                             |
| 2.1       | _     | 20 |        | ANGLING        | Angling                                |
| 2.2       | _     | 21 |        | RAFTING        | Rafting                                |
| 2.3       | _     | 22 |        | TREKKING       | Trekking                               |
| 2.4       |       | 23 | 19     | PROTECTED      | Protected Areas (large rivers)         |
| 3         |       | 24 |        | LIVELIHOOD     | Livelihood                             |
| 3.1       | _     | 25 |        | FISH_COMM_FOOD | Commercial and Food value of Fisheries |
| 3.2       | _     | 26 | 24     | PROVISION      | Water provision                        |
| 4         |       | 27 | 27     | SOCIO_CULT     | Socio-cultural                         |
| 4.1       | 2     | 28 | 27     | RELIGIOUS      | Religious and Cultural Sites           |

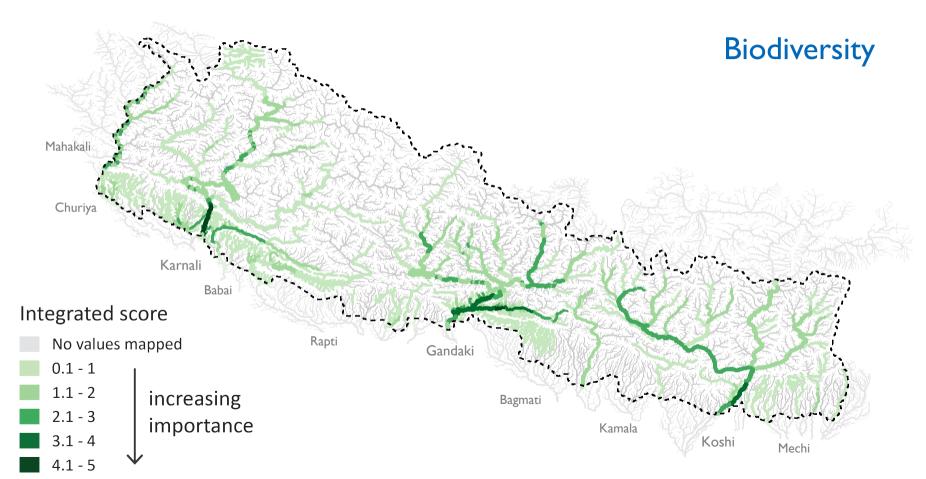
| eights_v1<br>Relative | Weight_v<br>1 Global | Weights_v2<br>_Relative | Weight_v2<br>Global |
|-----------------------|----------------------|-------------------------|---------------------|
| 25.0                  | 25.0                 | 50.0                    | 50.0                |
| 50.0                  | 12.5                 | 50.0                    | 25.0                |
| 25.0                  | 3.0                  | 25.0                    | 6.0                 |
| 25.0                  | 0.8                  | 25.0                    | 1.6                 |
| 25.0                  | 0.8                  | 25.0                    | 1.6                 |
| 25.0                  | 0.8                  | 25.0                    | 1.6                 |
| 25.0                  | 0.8                  | 25.0                    | 1.6                 |
| 60.0                  | 0.5                  | 60.0                    | 0.9                 |
| 40.0                  | 0.3                  | 40.0                    | 0.6                 |
| 25.0                  | 3.1                  | 25.0                    | 6.2                 |
| 25.0                  | 3.1                  | 25.0                    | 6.2                 |
| 25.0                  | 3.1                  | 25.0                    | 6.2                 |
| 50.0                  | 12.5                 | 50.0                    | 25.0                |
| 20.0                  | 2.5                  | 20.0                    | 5.0                 |
| 20.0                  | 2.5                  | 20.0                    | 5.0                 |
| 20.0                  | 2.5                  | 20.0                    | 5.0                 |
| 20.0                  | 2.5                  | 20.0                    | 5.0                 |
| 20.0                  | 2.5                  | 20.0                    | 5.0                 |
| 25.0                  | 25.0                 | 16.7                    | 16.7                |
| 25.0                  | 6.3                  | 25.0                    | 4.2                 |
| 25.0                  | 6.3                  | 25.0                    | 4.2                 |
| 25.0                  | 6.3                  | 25.0                    | 4.2                 |
| 25.0                  | 6.3                  | 25.0                    | 4.2                 |
| 25.0                  | 25.0                 | 16.7                    | 16.7                |
| 50.0                  | 12.5                 | 50.0                    | 8.3                 |
| 50.0                  | 12.5                 | 50.0                    | 8.3                 |
| 25.0                  | 25.0                 | 16.7                    | 16.7                |
| 100.0                 | 25.0                 | 100.0                   | 16.7                |
| Equal Group           |                      | _                       | odiversity<br>rent) |

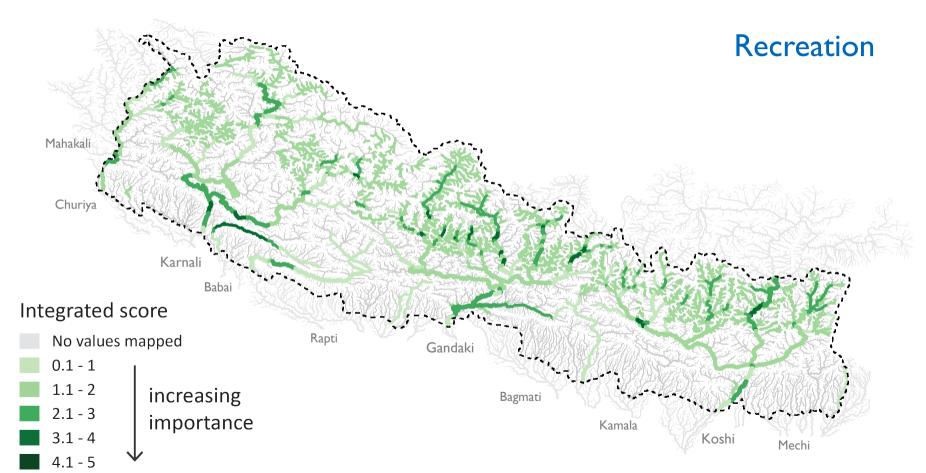
| Weights_v3   | Weight_v3  |
|--------------|------------|
| _Relative    | Global     |
| 55.0         | 55.0       |
| 60.0         | 33.0       |
| 55.0         | 18.0       |
| 25.0         | 4.5        |
| 25.0         | 4.5        |
| 25.0         | 4.5        |
| 25.0         | 4.5        |
| 60.0         | 2.7        |
| 40.0         | 1.8        |
| 15.0         | 5.0        |
| 15.0         | 5.0        |
| 15.0         | 5.0        |
| 40.0         | 22.0       |
| 20.0         | 4.4        |
| 20.0         | 4.4        |
| 20.0         | 4.4        |
| 20.0         | 4.4        |
| 20.0         | 4.4        |
| 15.0         | 15.0       |
| 25.0<br>25.0 | 3.8        |
| 25.0<br>25.0 | 3.8<br>3.8 |
| 25.0<br>25.0 | 3.8        |
| 15.0         | 15.0       |
| 50.0         | 7.5        |
| 50.0         | 7.5        |
| 15.0         | 15.0       |
| 100.0        | 15.0       |
| High Bio     |            |
| (alterna     | tive 1)    |
|              |            |

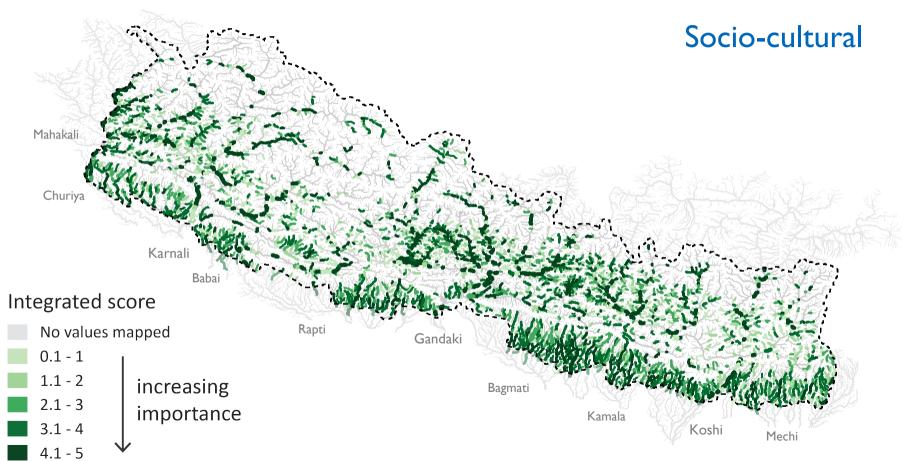
| Weights_v4<br>_Relative | Weight_v4<br>Global |  |  |
|-------------------------|---------------------|--|--|
| 60.0                    | 60.0                |  |  |
| 70.0                    | 42.0                |  |  |
| 55.0                    | 23.0                |  |  |
| 25.0                    | 5.8                 |  |  |
| 25.0                    | 5.8                 |  |  |
| 25.0                    | 5.8                 |  |  |
| 25.0                    | 5.8                 |  |  |
| 60.0                    | 3.5                 |  |  |
| 40.0                    | 2.3                 |  |  |
| 15.0                    | 6.3                 |  |  |
| 15.0                    | 6.3                 |  |  |
| 15.0                    | 6.3                 |  |  |
| 30.0                    | 18.0                |  |  |
| 20.0                    | 3.6                 |  |  |
| 20.0                    | 3.6                 |  |  |
| 20.0                    | 3.6                 |  |  |
| 20.0                    | 3.6                 |  |  |
| 20.0                    | 3.6                 |  |  |
| 15.0<br>25.0            | 15.0<br>3.8         |  |  |
| 25.0                    | 3.8                 |  |  |
| 25.0                    | 3.8                 |  |  |
| 25.0                    | 3.8                 |  |  |
| 10.0                    | 10.0                |  |  |
| 50.0                    | 5.0                 |  |  |
| 50.0                    | 5.0                 |  |  |
| 15.0                    | 15.0                |  |  |
| 100.0                   | 15.0                |  |  |
| High Biodiversity       |                     |  |  |
| (alterna                | ative 2)            |  |  |

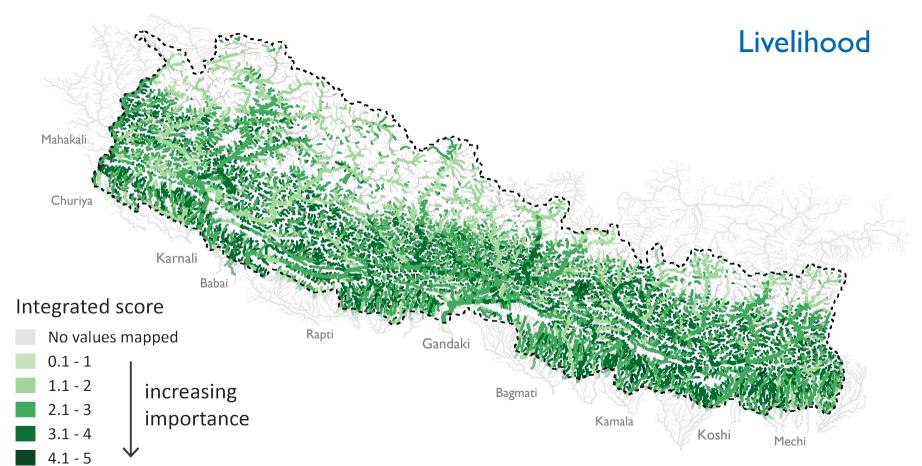

12/17/2020

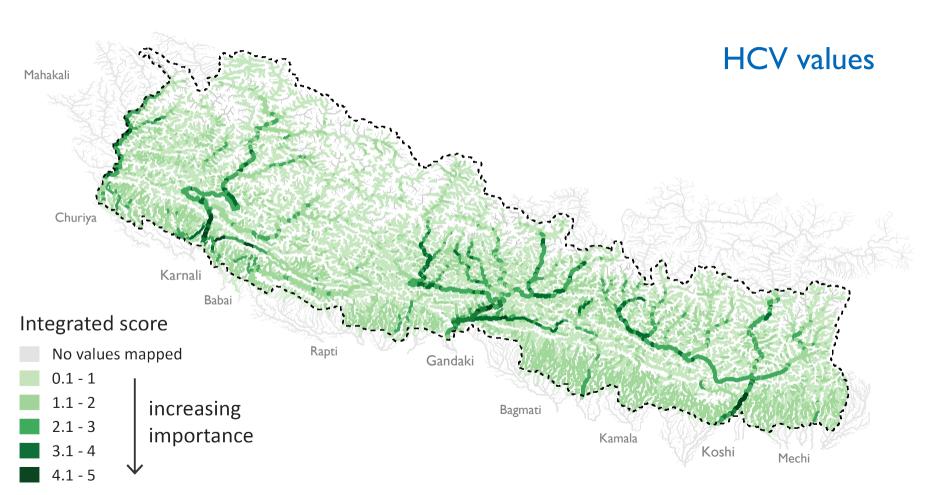
# River characteristics and their HCV values

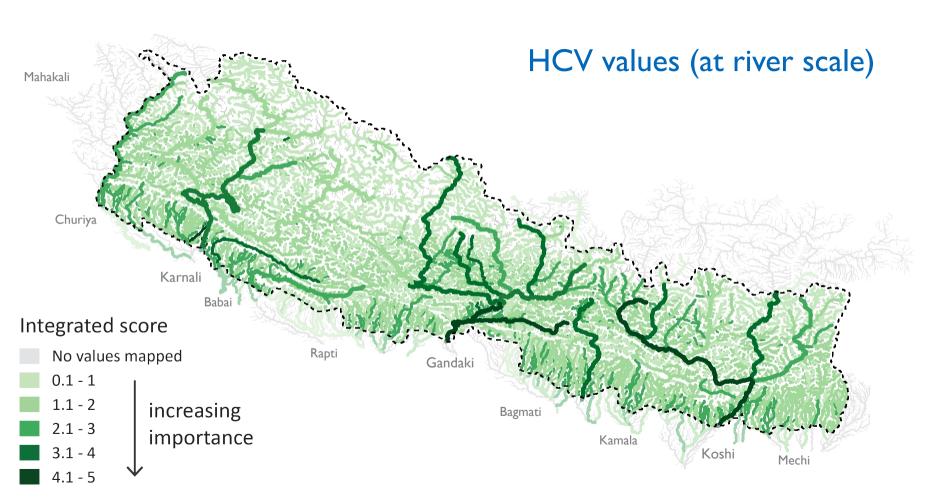

- Top 50 rivers
- River name and total length
- Contribution of value from each component (Biodiversity, Recreation, Livelihood, Socio-cultural) in percent of total of river (sum to 100% in each river)
- Aggregated HCV value for river

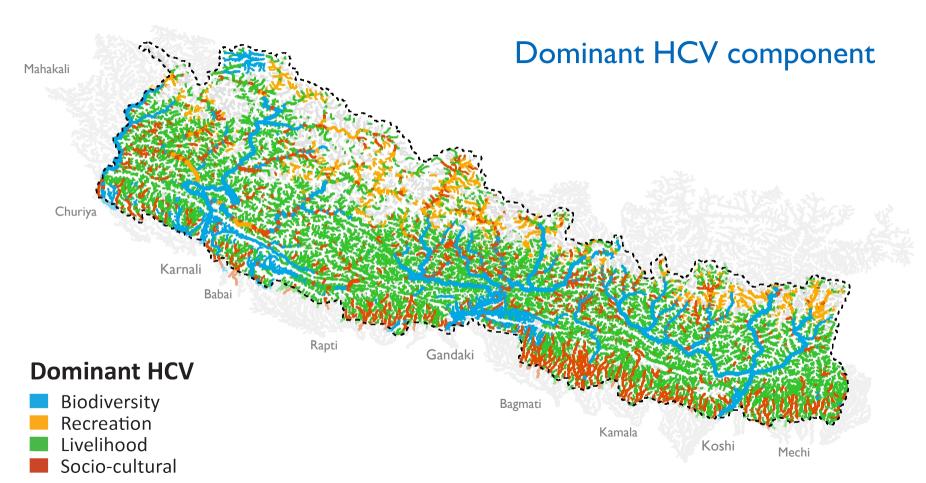

| RIVER ID | RIVER NAME               | LENGTH (KM) | BIODIVERSITY | RECREATION | LIVELIHOOD | SOCIO-CULTURAL | HCVR VALUE |
|----------|--------------------------|-------------|--------------|------------|------------|----------------|------------|
| 2085930  | Kali Gandaki Nadi        | 365         | 42.7         | 17.1       | 22.7       | 17.4           | 3.2        |
| 2085921  | Karnali Nadi             | 334         | 56.3         | 13.6       | 21.5       | 8.5            | 3.9        |
| 2086024  | Bheri Nadi               | 311         | 31.1         | 27.3       | 22.7       | 19             | 1.9        |
| 2085791  | Sunkoshi Nadi            | 263         | 56.3         | 13.2       | 22.2       | 8.3            | 4.1        |
| 2085881  | Mahakali Nadi            | 262         | 51.4         | 13.9       | 21.4       | 13.4           | 3.0        |
| 2085758  | West Seti Nadi           | 210         | 24.2         | 25.8       | 27.8       | 22.2           | 1.4        |
| 2086043  | Babai Nadi               | 194         | 54           | 16.5       | 20.1       | 9.4            | 3.6        |
| 2086037  | Bagmati Nadi             | 188         | 43.9         | 7.8        | 25.9       | 22.5           | 3.5        |
| 2085825  | West Rapti Nadi          | 182         | 37.8         | 13         | 31         | 18.2           | 2.2        |
| 2085781  | Tamur Nadi               | 175         | 49           | 18.3       | 25.4       | 7.4            | 2.6        |
| 2086047  | Arun Nadi                | 158         | 46.3         | 21.5       | 21.3       | 10.9           | 3.3        |
| 2085762  | Trishuli Nadi            | 156         | 45.6         | 14.1       | 21.7       | 18.5           | 3.8        |
| 2085875  | Marsyangdi Nadi          | 156         | 28.1         | 26.4       | 19         | 26.5           | 2.4        |
| 2085980  | Dudhkoshi Nadi           | 140         | 33           | 24.9       | 24.6       | 17.5           | 2.0        |
| 2085953  | Humla Karnali Nadi       | 139         | 40.3         | 21.5       | 26         | 12.1           | 1.7        |
| 2085978  | East Rapti Nadi          | 138         | 61.1         | 10.9       | 17.6       | 10.4           | 5.0        |
| 2085801  | Seti Nadi                | 132         | 49           | 13.6       | 18.5       | 18.9           | 3.4        |
| 2085929  | Kamala Nadi              | 127         | 21.5         | 0          | 43.5       | 35             | 1.6        |
| 2086016  | Budi Gandaki Nadi        | 126         | 48.7         | 17.3       | 23.3       | 10.7           | 3.1        |
| 2085860  | Narayani (Sapta Gandaki) | 108         | 66.6         | 11.4       | 15.6       | 6.4            | 4.8        |
| 2040810  | Madi Khola               | 96          | 0            | 10.4       | 56.7       | 32.9           | 1.0        |
| 2085806  | Sarada Nadi              | 95_         | 37.3         | 0          | 37.7       | 25             | 1.7        |
| 2086033  | Bakaiya Nadi             | 92          | 0            | 0          | 39         | 61             | 1.3        |
| 2086017  | Budhi Ganga Nadi         | 90_         | 41           | 10.5       | 26.1       | 22.4           | 2.0        |
| 2086029  | Banganga River           | 86          | 6.3          | 0          | 45.8       | 47.9           | 1.6        |
| 2085784  | Tamakoshi Nadi           | 86          | 46.9         | 12.8       | 17.3       | 22.9           | 3.2        |
| 2085868  | Mohana Nadi              | 85          | 32.9         | 0          | 33.9       | 33.2           | 1.9        |
| 2085945  | Jhimruk Khola            | 84          | 35.6         | 12.6       | 45.9       | 5.9            | 1.7        |
| 2086008  | Chameliya Nadi           | 83          | 47.7         | 11.5       | 22.9       | 17.9           | 2.7        |
| 2085891  | Likhu Khola              | 80          | 46.4         | 16.9       | 28         | 8.7            | 2.0        |
| 2085807  | Saptakoshi Nadi          | 77          | 58.6         | 9.3        | 17.4       | 14.8           | 4.7        |
| 2085877  | Mai Khola                | 77          | 25.9         | 0          | 50.5       | 23.6           | 1.2        |
| 2085866  | Mugu Karnali Nadi        | 75          | 50.2         | 11         | 29.9       | 8.9            | 2.0        |
| 2085882  | Madi Nadi                | 75          | 40           | 18.7       | 21.7       | 19.6           | 3.4        |
| 2085847  | Panar                    | 67          | 0_           | 0          | 55.3       | 44.7           | 1.5        |
| 2086028  | Barun Khola              | 65          | 0            | 43.8       | 30.5       | 25.7           | 0.7        |
| 2085771  | Tila Nadi                | 64          | 37.4         | 2.5        | 26         | 34.2           | 2.6        |
| 2085764  | Trijuga Nadi             | 64          | 37.4         | 1.3        | 42.9       | 18.5           | 2.0        |
| 2085876  | Marin Khola              | 64          | 0            | 0          | 64.8       | 35.2           | 0.9        |
| 2085974  | Ganga Nadi               | 63          | 33.4         | 17.6       | 42.4       | 6.6            | 1.4        |
| 2086056  | Thuli Bheri Nadi         | 62          | 0            | 40.3       | 39.3       | 20.4           | 1.1        |
| 2085823  | Ratmata Khola            | 62          | 9.8          | 0          | 39.5       | 50.7           | 1.7        |
| 2085873  | Mechi Nadi               | 62          | 25.3         | 4.8        | 35.1       | 34.8           | 1.7        |
| 2085966  | Ghunse Khola             | 61          | 11           | 53.8       | 24.1       | 11.1           | 1.0        |
| 2085988  | Daraudi Khola            | 61          | 0            | 29.9       | 57.9       | 12.3           | 0.8        |
| 2085927  | Kandra Nadi              | 61          | 50.8         | 0          | 28.5       | 20.7           | 2.2        |
|          |                          |             |              |            |            |                |            |

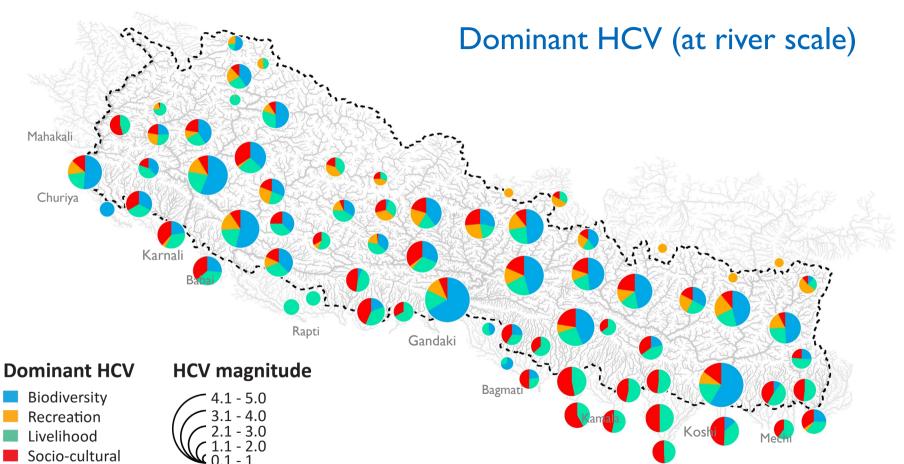

### Summarizing HCV at the scale of rivers (vs. river reach)





where  $HCV_R$  is the HCV in park R;  $HCV_i$  is the HCV value of the river reach i and l is the length of river reach i. The resulting aggregated HCV values can range from 0 (no value mapped) to 5 (maximum value of all components)



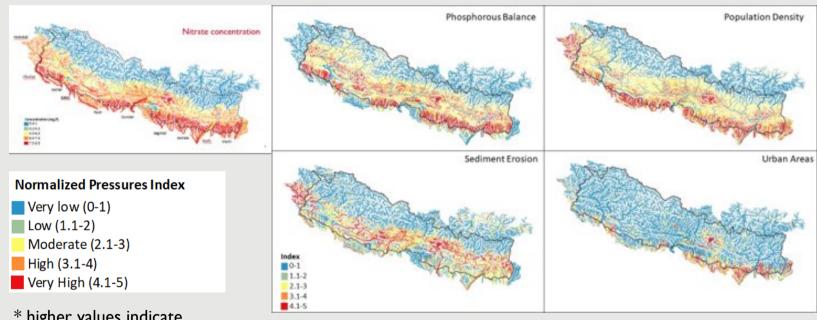




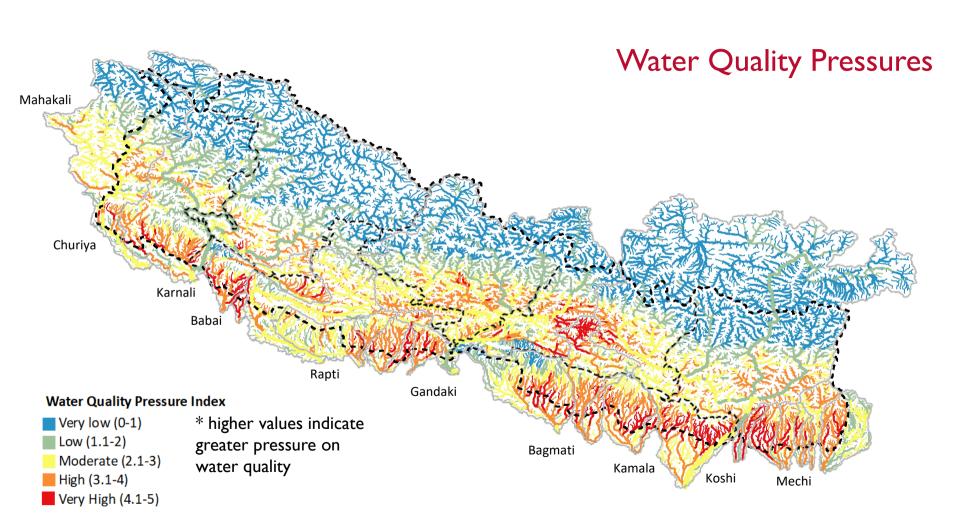










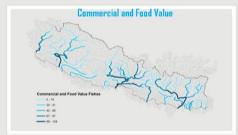


## Water Quality Datasets

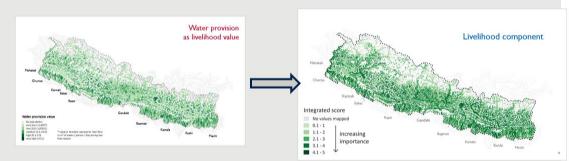
| Proxy Indicator                           | Rationale                                                                                                                                     | Source                                                                                      | Resolution                          | Method                    |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|
| Urban areas                               | Urban areas are a source of industrial and manufacturing pollutants                                                                           | Global Urban Footprint; Esch et al. (2014)                                                  | 0.4 arcsec (~12 m)                  | Spatial<br>accumulation   |
| Phosphorous application                   | Phosphorus fertilizer is an important source of Phosphate pollution                                                                           | West et al. (2014) ( <u>link)</u>                                                           | 5 arcmin                            | Spatial<br>accumulation   |
| Sediment pollution from road construction | Sediment from road construction increases the sediment load, and constitutes are constant source of sediment delivery through ongoing erosion | World Bank study (Vogl, Schmitt, et al. 2019); own calculations using OpenStreetMap         | Calculated on river-<br>reach scale | Spatial<br>accumulation   |
| Population density                        | Human settlements introduce Nitrate and Phosphate via waste and wastewater streams                                                            | WorldPop 2020; Gaughan et al. (2013)                                                        | 30 arcsec                           | Spatial<br>accumulation   |
| Nitrate                                   | Nitrate is important source of water pollution with impacts on humans and aquatic organisms                                                   | Training data (Nitrate observations): PAANI Covariates: global river and nutrient data sets | Variable                            | Machine learning<br>model |

### Results - Proxy indicators for Water Quality

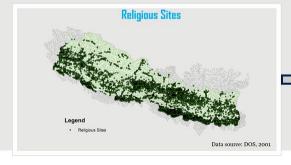


<sup>\*</sup> higher values indicate greater pressure on water quality



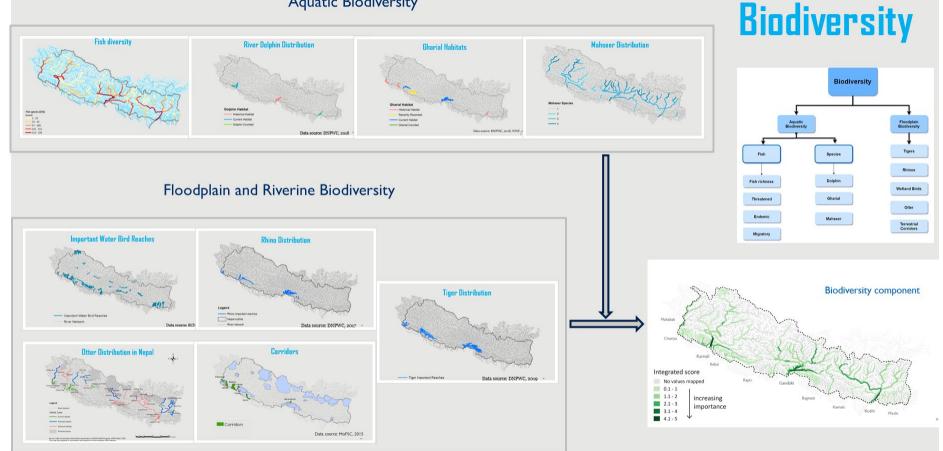



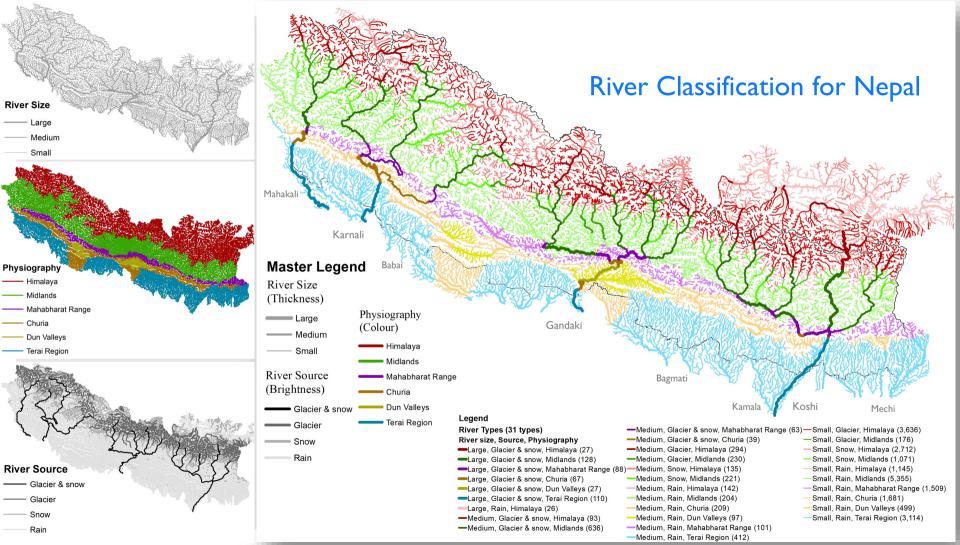

#### **Recreation Values**









## **Cultural and Religious Values**





#### Aquatic Biodiversity





# River Types Representation on HCV categories

- All 29 river types within Nepal are represented across different HCV value categories
- Large, Glacier & Snow, Dun; Large, Glacier & Snow, Terai; Large Glacier & Snow, Churia; Medium, Rain, Dun; and Medium, Glacier & Snow, Midland rivers have been well represented in high HCV value categories (M to VH)
- Thus, the results show that most river types are well represented in the results of the HCV

assessment

| SN | River Types                   |
|----|-------------------------------|
| I  | Large, Glacier/snow, Himalaya |
|    | Large, Glacier/snow, Dun      |
| 2  | Valleys                       |
|    | Large, Glacier/snow, Terai    |
| 3  | Region                        |
| 4  | Medium, Glacier/snow, Churia  |
| 5  | Large, Glacier/snow, Churia   |
|    | Medium, Glacier/snow,         |
| 6  | Mahabharat Range              |
|    |                               |

Medium, Snow, Himalaya

Medium, Rain, Dun Valleys

Medium, Rain, Terai Region

Small, Glacier, Midlands

Medium, Rain, Midlands

Medium, Rain, Churia

Small, Rain, Himalaya

Medium, Glacier, Himalaya

Medium, Glacier, Midlands

Medium, Snow, Midlands

Small, Rain, Dun Valleys

Medium, Glacier/snow,

Small, Snow, Midlands

Small, Rain, Terai Region

Small, Snow, Himalaya

**Grand Total** 

Small, Glacier, Himalaya Small, Rain, Midlands

Small, Rain, Mahabharat Range

Small, Rain, Churia

Midlands

Large, Glacier/snow, Midlands

Medium, Glacier/snow.

Large, Glacier/snow,

Mahabharat Range Medium, Rain, Mahabharat

Himalaya

Range

Number of River Reaches

| 9 |  |
|---|--|
|   |  |
| 4 |  |
|   |  |
|   |  |
|   |  |
| 4 |  |
|   |  |

high

(3-

4)

medium

(2-3)

verv

high

(4-5)

Total

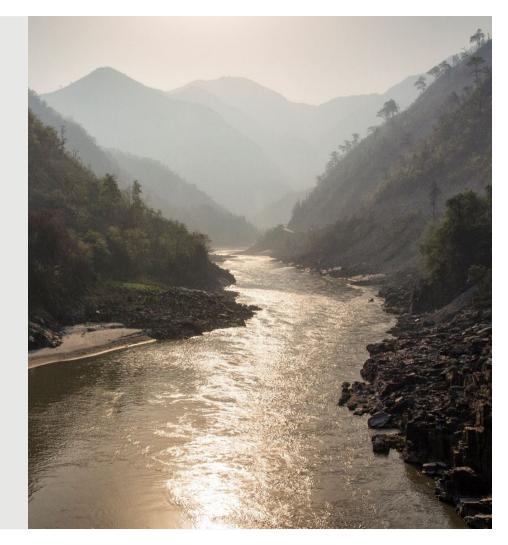
**HCV Value Categories (HCV Value range)** 

low

(1-2)

Very

low


**(<I)** 

No Value

mapped

#### Products and assessments

- Freshwater status
  - Free-flowing river analysis
  - Water Quality pressures assessment
- Freshwater values
  - Created 20 novel data layers of freshwater values from four categories: Biodiversity, Recreation, Livelihood, and Socio-cultural
- High-Conservation Value River Maps for Nepal
  - Combination of Freshwater status and freshwater values into HCVR types and recommendations for management



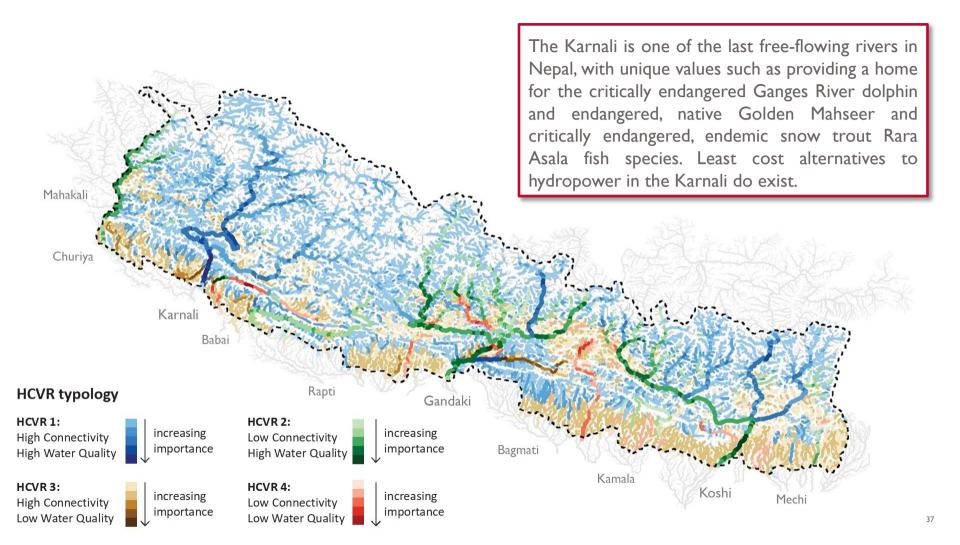
#### Conclusions & Recommendations

Maps of High Conservation Value Rivers of Nepal provide critical information for:

- Natural resources, energy and spatial planning such as:
  - ongoing hydropower and basin planning processes under the leadership of the Water and Energy Commission Secretariat and the Ministry of Forest and the Environment.
- Policy implementation, such as:
  - delivery of international and national commitments to Nepal's National Biodiversity
     Strategy and Action Plan (2014-2020) under the Convention on Biodiversity
  - and National Strategic Framework for Sustainable Development (2015-2030)
- Insights into opportunities for mitigation of development impacts






#### Policy Brief I: Why is it important to identify HCVR in Nepal?

A High Conservation Value River (HCVR) is a clean, highly connected or free flowing river or stretch that acts as a lifeline, maintaining ecosystem services for present and future generations, providing refuge and habitat for high levels of aquatic biodiversity, and supporting important socio-cultural values.

#### Identification of HCVRs can:

- provide critical information for planning at different levels through quantitative evaluation and spatial mapping of the values that rivers provide to society.
- help the country in meetings its national and international commitments including Nepal's National Biodiversity Strategy and Action Plan (2014-2020) and National Strategic Framework for Sustainable Development (2015-2030).
- provide insights into opportunities for mitigation of development impacts.

The HCVR outputs will guide development and contribute to a set of ongoing hydropower planning processes under the leadership of the Water and Energy Commission Secretariat (WECS).





System-scale planning to support sustainable energy systems and conservation of freshwater resources for people and nature

Nepal